
Convolutional Neural Networks

Deep Learning (ENGG*6600*07)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Fall 2023

Convolutional Neural Networks 1 / 32



Convolutional Neural Networks

Consider an image with its pixels as the data for neural network. If the neural network is
fully connected, it cannot capture the 2D spatial correlation of nearby pixels. This is
because in fully connected neural networks (or multilayer Perceptrons), we should reshape
the input image to become a vector.

Therefore, Convolutional Neural Network (CNN) was proposed to get the images as they
are and not in reshaped form. In this way, the neural network can consider the 2D
correlation of pixels.

CNN is a neural network which uses convolution in place of general matrix multiplication
in at least one of the its layers. A CNN might or might not have one or several fully
connected layers in addition to convolutional layer(s).

Convolutional Neural Networks 2 / 32



LeNet

CNN was initially proposed by Kunihiko Fukushima from Japan in 1980 [1]. That network
was named neocognitron in that paper.

The idea of CNN was adopted and slightly modified for the task of handwritten digit
recognition by a team led by Yann LeCun in around 1989 [2].

Later in 1998, it was improved by Yann Lecun and Yoshua Bengio et al. and named
LeNet [3] after the name of LeCun. The paper [3] was the paper which proposed the
Modified NIST (MNIST) dataset which is a handwritten digit dataset widely used as a
benchmark in machine learning nowadays.

The structure of LeNet is shown in this figure:

Convolutional Neural Networks 3 / 32



The Stages in a Convolutional Layer

Every convolutional layer has three stages:
▶ convolution stage
▶ detector stage (activation function)
▶ pooling stage

We talk about all these stages.

Convolutional Neural Networks 4 / 32



Convolution Stage

Convolutional Neural Networks 5 / 32



Convolution Stage

Recall filtering in image processing. We have various kernel filters for different tasks such
as edge detection, corner detection, smoothing, sharpening, etc.

For example, these two filter kernels in Prewitt filter (1970) [4] detect the horizontal and
vertical edges of the image: 1 1 1

0 0 0
−1 −1 −1

 ,

1 0 −1
1 0 −1
1 0 −1

 , (1)

respectively.

These specific kernels are used for edge detection (feature extraction for edges). There are
specific filters for specific tasks (feature extraction for specific tasks).

But for a general machine learning task, such as classification or regression, we may need
different filter kernels for feature extraction. The kernel differs for various machine
learning tasks and also different dataset. Even for the same task, we may need different
filter kernels for different datasets.

Therefore, let us learn the best filter kernel values, using optimization, for our task and
our dataset. This is the idea of convolutional layer. A convolutional layer considers the
values of the filter kernel as learnable weights of that layer which can be trained by the
backpropagation algorithm [5].

Convolutional Neural Networks 6 / 32



Convolution Stage
The discrete convolution is defined as:

a[t] = (x ∗ k)[t] =
∞∑

a=−∞
x[a]w [t − a]. (2)

We often use convolution in more than one axis at a time for a 2D image I . Let the kernel
of 2D filter be denoted by K . The 2D convolution is:

s[i , j] = (I ∗ K)[i , j] =
∑
m

∑
n

I [m, n]K [i −m, j − n], (3)

where the summation is over the number of rows and columns of the filter kernel. In other
words, in a convolutional layer, we do not consider convolution in all range (−∞,∞) but
only in the range of kernel size. We can assume that the summations in convolution are in
all range (−∞,∞) but our signal is zero after the size of the filter kernel.

Convolution flips one of the signals such as the kernel filter. Usually, we do not flip the
filter kernel in the convolutional layer, as also done in image processing. This does not
make any difference because if we flip the kernel, the network will learn the flipped weights
of the kernel, and if we do not flip it, the network will learn the non-flipped weights of the
kernel. The non-flipped convolution is cross correlation and is formulated as:

s[i , j] = (I ∗ K)[i , j] =
∑
m

∑
n

I [m, n]K [m − i , n − j]. (4)

Convolutional Neural Networks 7 / 32



Convolution Stage
Compare a dense (fully connected) layer and a convolutional layer:

As seen in this figure, the convolutional layer is sparse and not dense like the fully
connected layer. In a fully connected layer, every output neuron interacts with every input
neuron. However, in a convolutional layer, there is a sparse connectivity and thus sparse
learnable weights.

This sparsity is beneficial for the “betting on sparsity principal” [6, 7], the Occam’s razor
[8], and also being low-rank (the weight matrix will probably have lower rank compared to
a dense layer) [9].

As obvious in the above figure, this sparsity occurs because the kernel is usually smaller
than the input size. If the kernel size is the same as the input size, the layer becomes a
dense (fully connected) layer.

If the number of input and output neurons of a layer are m and n, respectively, the
run-time, the required space, and the number of parameters of a fully connected layer is
O(m × n). That is while, if the kernel size is k (where k < m), the run-time, the required
space, and the number of parameters of a convolutional layer is O(k × n). Therefore, both
time complexity and space complexity of a convolutional layer is better than a dense layer.

Convolutional Neural Networks 8 / 32



Convolution Stage

There is another constraint in a convolutional layer and that is parameter sharing. the
parameters (wights) of the kernels are shared. In other words, we sweep the same kernel
over the neurons in a convolutional layer.

In a traditional fully connected layer, every element of the weight matrix is multiplied by
one element of the input, i.e., it is used once when computing the output of a layer.

In a convolutional layer, every element of the kernel is used at every position of the input.
Instead of learning a separate set of parameters for every position, we learn only one set.

Convolutional Neural Networks 9 / 32



Convolution Stage

Another property of the convolutional layer is the equivalence property of the convolution
operator with respect to translation.

A function f (x) is equivalent to a function g(x) if:

f (g(x)) = g(f (x)). (5)

The convolution operator has equivalence property with respect to translation. Therefore,
these two are equivalent:

▶ Translate image/input and then apply convolution
▶ Apply convolution and then translate image/input.

Note that convolution is not equivalent with respect to some other transformations such
as rotation and changes in scale.

Convolutional Neural Networks 10 / 32



Convolution Stage

Important parameters in the convolutional stage:
▶ stride: the step of jump of kernel in convolution
▶ width: the width and height of kernel
▶ number of channels: the depth of the kernel. Do not confuse with the number of

channels of data/input of the filter kernel!
▶ padding: we can apply padding to increase the input width and height. Some

padding methods are zero padding, mirror padding, etc.

Example of convolution with 1 channel of input:
https://i.stack.imgur.com/uEoXw.gif

Example of convolution with 3 channels of input and 2 channels W1 and W2:
https://codelabs.developers.google.com/codelabs/keras-flowers-convnets#4

Convolutional Neural Networks 11 / 32

https://i.stack.imgur.com/uEoXw.gif
https://codelabs.developers.google.com/codelabs/keras-flowers-convnets#4


Detector Stage

Convolutional Neural Networks 12 / 32



Detector Stage

Detector stage is another name for the activation function. This is because they act like
they detect the signal if the signal passes from a threshold.

We already talked about the activation functions before in this course.

Convolutional Neural Networks 13 / 32



Pooling Stage

Convolutional Neural Networks 14 / 32



Pooling Stage
In pooling stage, pooling is performed. Pooling provides a summary statistics from the
signal.
Some example pooling operators are:

▶ Max pooling
▶ Average pooling
▶ Weighted average pooling
▶ Median pooling
▶ ℓ2 norm pooling

Convolutional Neural Networks 15 / 32



Pooling Stage
stride: the step of jump for kernel of pooling. Based on stride, pooling may be
overlapping or non-overlapping.
width: width of kernel of pooling
number of channels: the depth of the kernel of pooling which is the same as the number
of channels in the input of the pooling stage.
padding: we can apply padding to increase the input width and height. Some padding
methods are zero padding, mirror padding, etc.

Convolutional Neural Networks 16 / 32



Pooling Stage
Pooling makes the features almost invariant to local translations.

For example, here, all four features of input
of pooling stage have changes. However, only two features have changed after max pooling.

In most cases, it is good to become invariant and robust to local translations but in some
applications, it may be destructive. It is usually helpful because we usually
want to know whether a specific feature exists in data but we do not care where exactly it is.

Pooling also helps in downsampling data. This reduces the representation size and hence
the computational and the statistical burden on the next layer.

Convolutional Neural Networks 17 / 32



Pooling Stage

We can see both convolution and pooling stages as infinitely strong prior.

Again, this is beneficial for “betting on sparisity principal” [6, 7], the Occam’s razor [8].

Convolutional Neural Networks 18 / 32



Pooling Stage

We can dynamically pool the features together, rather than pooling the neighbor features
together only. For example, by running a clustering algorithm (such as K-means) on
locations of the interesting features, we can pool the features in the same cluster (2011)
[10]. In this way, different sets of pooling regions will be used for different data inputs.

We can rather learn a single pooling structure and then we apply that learned pooling
structure to all data inputs (2012) [11].

We can use pooling to handle inputs of varying sizes.

Convolutional Neural Networks 19 / 32



Batch Normalization

Convolutional Neural Networks 20 / 32



Batch Normalization
Batch normalization was proposed in 2015 [12].

It can be used in various network structures including fully connected and convolutional
layers.

It helps prevent covariate shift and hence helps generalization and avoiding overfitting.

It also helps training to be faster.

Assume the input of a layer is x = [x1, x2, . . . , xd ]
⊤. So, the layer has d neurons.

For a mini-batch, let the input of the layer be the set {x i}bi=1 where b is the batch size.

Let xij denote the j-th dimension of x i , i.e., x i = [xi1, . . . , xid ]
⊤.

Batch normalization standardizes or applies Z-score normalization on every feature (every
neuron’s input) over the mini-batch:

R ∋ µj :=
1

b

b∑
i=1

xij , (6)

R ∋ σ2
j :=

1

b

b∑
i=1

(xij − µj )
2, (7)

xij ←
xij − µj√
σ2
j + ε

, (8)

where ε > 0 is a small positive number for stability and prevention of possible division by
zero.

Convolutional Neural Networks 21 / 32



Initialization of Kernel
(Layer) Weights

Convolutional Neural Networks 22 / 32



Initialization of Kernel (Layer) Weights

Backpropagation is gradient descent and chain rule in derivatives. So, we need to initialize
the weights, i.e., the optimization variables, for backpropagation. Two ways for
initialization:

▶ learn the wights by an unsupervised method. Example: using Principal Component
Analysis (PCA) [13].

▶ initialization by random features. It is related to random projection and
Johnson-Lindenstrauss lemma [14].

Convolutional Neural Networks 23 / 32



Initialization of Kernel (Layer) Weights

Method 1: learn the wights by an unsupervised method.

Divide the input of the layer into patches. The patch size s can be the stride of the kernel
for convolution.

Shift the patches a little bit by some features or pixels.

Collect all the patches and reshape them to become column vectors. Apply Principal
Component Analysis (PCA) [13] on the patches. It gives you s × s eigenvector matrices.
Make a matrix with the size of the input, where the s × s eigenvector matrices of PCA
replace the patches in this big matrix. This matrix can be the initial kernel of convolution
of that layer.

Do this for all layers to find the initial kernels for every layer.

Convolutional Neural Networks 24 / 32



Initialization of Kernel (Layer) Weights

Method 2: initialization by random features.

It is related to random projection and Johnson-Lindenstrauss lemma [14].

Set the initial values weights randomly by some stochastic distribution such as Gaussian
or uniform distribution.

The values should not be too large not to have gradient explosion. They all should not be
too small not to have gradient vanishing.

Convolutional Neural Networks 25 / 32



Random Projection
Linear random projection is projection of data points onto the column space of a
projection matrix where the elements of projection matrix are i.i.d. random variables
sampled from a distribution with zero mean and (possibly scaled) unit variance.

In other words, random projection is a function f : Rd → Rp , f : x 7→ U⊤x :

Rp ∋ f (x) := U⊤x =

p∑
t=1

u⊤
t x =

d∑
j=1

p∑
t=1

ujt xj , (9)

where U = [u1, . . . , up ] ∈ Rd×p is the random projection matrix, ujt is the (j , t)-th

element of U, and xj is the j-th element of x ∈ Rd .

The elements of U are sampled from a distribution with zero mean and (possibly scaled)
unit variance. For example, we can use the Gaussian distribution uj,t ∼ N (0, 1), ∀j , t.
Some example distributions to use for random projection are Gaussian [15] and Cauchy
[16, 17] distributions.

It is noteworthy that, in some papers, the projection is normalized:

f : x 7→
1
√
p
U⊤x . (10)

If we have a dataset of d-dimensional points with sample size n, we can stack the points
in X := [x1, . . . , xn] ∈ Rd×n. Eq. (9) or (10) is stated as:

Rp×n ∋ f (X ) := U⊤X or
1
√
p
U⊤X . (11)

Convolutional Neural Networks 26 / 32



Random Projection

In contrast to other linear dimensionality reduction methods which learn the projection
matrix using training dataset for better data representation of class discrimination,
random projection does not learn the projection matrix but randomly samples it
independent of data.

Surprisingly, projection of data onto the column space of this random matrix works very
well although the projection matrix is completely random and independent of data.

The Johnson-Lindenstrauss (JL) lemma [18] justifies why random projection works. For
proof, see our tutorial paper “Johnson-Lindenstrauss lemma, linear and nonlinear random
projections, random Fourier features, and random kitchen sinks: Tutorial and survey” [14].

Convolutional Neural Networks 27 / 32



Johnson-Lindenstrauss Lemma
Johnson-Lindenstrauss Lemma (1984) [18]:
For any set X := {x i ∈ Rd}ni=1, any integer n as the sample size, and any 0 < ϵ < 1 as error
tolerance, let p be a positive integer satisfying:

p ≥ Ω(
ln(n)

ϵ2 − ϵ3
), (12)

where ln(.) is the natural logarithm and Ω(.) is the lower bound complexity [n.b. some works
state Eq. (12) as:

p ≥ Ω(ϵ−2 ln(n)). (13)

by ignoring ϵ3 against ϵ2 in the denominator because ϵ ∈ (0, 1)]. There exists a linear map
f : Rd → Rp , f : x 7→ U⊤x , with projection matrix U = [u1, . . . , up ] ∈ Rd×p , such that we have:

(1− ϵ)∥x i − x j∥22 ≤ ∥f (x i )− f (x j )∥22 ≤ (1 + ϵ)∥x i − x j∥22, (14)

for all x i , x j ∈ X , with probability of success as:

P
(
(1− ϵ)∥x i−x j∥22 ≤ ∥f (x i )− f (x j )∥22 ≤ (1 + ϵ)∥x i − x j∥22

)
≥ 1− δ, (15)

where δ := 2e−(ϵ2−ϵ3)(p/4) and the elements of the projection matrix are i.i.d. random variables
with mean zero and (scaled) unit variance. An example is uij ∼ N (0, 1/p) = (1/

√
p)N (0, 1)

where uij denotes the (i , j)-th element of U.

Convolutional Neural Networks 28 / 32



Acknowledgment

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics.

Convolutional Neural Networks 29 / 32



References

[1] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position,” Biological cybernetics, vol. 36, no. 4,
pp. 193–202, 1980.

[2] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel, “Backpropagation applied to handwritten zip code recognition,” Neural
computation, vol. 1, no. 4, pp. 541–551, 1989.

[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[4] J. M. Prewitt et al., “Object enhancement and extraction,” Picture processing and
Psychopictorics, vol. 10, no. 1, pp. 15–19, 1970.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[6] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning: Data
Mining, Inference, and Prediction, vol. 2.
Springer series in statistics, New York, NY, USA, 2009.

[7] R. Tibshirani, M. Wainwright, and T. Hastie, Statistical learning with sparsity: the lasso
and generalizations.
Chapman and Hall/CRC, 2015.

Convolutional Neural Networks 30 / 32



References (cont.)

[8] P. Domingos, “The role of Occam’s razor in knowledge discovery,” Data mining and
knowledge discovery, vol. 3, no. 4, pp. 409–425, 1999.

[9] B. Kulis, M. Sustik, and I. Dhillon, “Learning low-rank kernel matrices,” in Proceedings of
the 23rd international conference on Machine learning, pp. 505–512, 2006.

[10] Y.-L. Boureau, N. Le Roux, F. Bach, J. Ponce, and Y. LeCun, “Ask the locals: multi-way
local pooling for image recognition,” in 2011 International Conference on Computer Vision,
pp. 2651–2658, IEEE, 2011.

[11] Y. Jia, C. Huang, and T. Darrell, “Beyond spatial pyramids: Receptive field learning for
pooled image features,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 3370–3377, IEEE, 2012.

[12] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International conference on machine learning,
pp. 448–456, pmlr, 2015.

[13] B. Ghojogh and M. Crowley, “Unsupervised and supervised principal component analysis:
Tutorial,” arXiv preprint arXiv:1906.03148, 2019.

[14] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Johnson-lindenstrauss lemma, linear
and nonlinear random projections, random fourier features, and random kitchen sinks:
Tutorial and survey,” arXiv preprint arXiv:2108.04172, 2021.

Convolutional Neural Networks 31 / 32



References (cont.)

[15] R. Giryes, G. Sapiro, and A. M. Bronstein, “Deep neural networks with random Gaussian
weights: A universal classification strategy?,” IEEE Transactions on Signal Processing,
vol. 64, no. 13, pp. 3444–3457, 2016.

[16] P. Li, T. J. Hastie, and K. W. Church, “Nonlinear estimators and tail bounds for dimension
reduction in ℓ1 using Cauchy random projections,” Journal of Machine Learning Research,
vol. 8, no. Oct, pp. 2497–2532, 2007.

[17] A. B. Ramirez, G. R. Arce, D. Otero, J.-L. Paredes, and B. M. Sadler, “Reconstruction of
sparse signals from ℓ1 dimensionality-reduced Cauchy random projections,” IEEE
Transactions on Signal Processing, vol. 60, no. 11, pp. 5725–5737, 2012.

[18] W. B. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings into a Hilbert
space,” Contemporary mathematics, vol. 26, 1984.

Convolutional Neural Networks 32 / 32


