
Important Convolutional Neural Networks

Deep Learning (ENGG*6600*07)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Fall 2023

Important Convolutional Neural Networks 1 / 32



Introduction

There exist various convolutional neural networks. Some of the the most important and
well-known ones are listed below.

AlexNet (2010) [1]. It was published in 2017 but it competed in the ImageNet Large Scale
Visual Recognition Challenge in 2010.

VGG (2014) [2]

Inception and GoogLeNet (2015) [3]

U-Net (2015) [4]

ResNet (2016) [5]

DenseNet (2017) [6]

Most of these neural netwoprks were developed by big companies and they often were winning
the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [7] in different years. This is
an annual classification challenge in machine learning and image processing.

Important Convolutional Neural Networks 2 / 32



About ImageNet and ILSVRC

ImageNet is an image dataset containing 15 million labeled high-resolution images with
about 22,000 classes.

The images of ImageNet were collected from the web and manually labeled by humans
using Amazon’s Mechanical Turk crowd-sourcing tool [8].

Since 2010, ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [7] has been
held as a part of the Pascal Visual Object Challenge [9].

ILSVRC is an annual classification challenge in machine learning and image processing [1].

The dataset in ILSVRC is a subset of the ImageNet with 1000 classes each of which
having 1000 images.

The ILSVRC dataset has about 1.2 million high-resolution images with 1000 classes. The
images are 224× 224 pixels with three channels of RGB (Red-Green-Blue).

Important Convolutional Neural Networks 3 / 32



AlexNet

Important Convolutional Neural Networks 4 / 32



AlexNet
The architecture of AlexNet is as follows.

Eight layers: five convolutional layers and three fully connected layers

The network of AlexNet is spread into two GPUs because it was too big to fit in the 3GB
memory of one GPU. This also accelerates the training phase.

The settings of the layers:
▶ layer 1 filters 224× 224× 3 input images with 96 kernels of size 11× 11× 3 with

stride 4.
▶ layer 2 filters 11× 11× 3 feature maps (output of layer 1) with 256 kernels of size

5× 5× 48.
▶ layer 3 filters 5× 5× 48 feature maps (output of layer 2) with 384 kernels of size

3× 3× 256.
▶ layer 4 filters 3× 3× 256 feature maps (output of layer 3) with 384 kernels of size

3× 3× 192.
▶ layer 5 filters 3× 3× 192 feature maps (output of layer 4) with 256 kernels of size

3× 3× 192.
▶ Layers 6, and 7 are fully connected layers and have 4096 neurons. The last layer is a

fully connected layer with 1000 neurons.

All layers except the last layer have Rectified linear unit (ReLU) activation function [10].
This is because ReLU accelerates training and has been found to be effective.

The last layer has 1000 neurons with softmax activation function for classification into
1000 classes.

Important Convolutional Neural Networks 5 / 32



AlexNet

In the layer 1 and layer 2, a local response normalization is applied after the ReLU
activation function. It was empirically found to help generalization in AlexNet. Let aix,y
denote the output of kernel i at the position (x , y) followed by ReLU activation function.
Then, the local response normalization is:

bix,y =
aix,y(

k + α
∑min(N−1,i+n/2)

j=max(0,i−n/2)
(aix,y )

2
)β , (1)

where the summation is over n adjacent kernel maps at the same spatial position and N is
the total number of kernels in the layer. The hyper-parameters k, α, and β were
determined by a validation set and were found to be k = 2, n = 5, α = 10−4, and
β = 0.75.

There is max pooling after layer 1, layer 2, and layer 5. In layers 1 and 2, this pooling is
applied after the local response normalization. The width of pooling kernel is 3 and the
stride is 2. Therefore, it uses overlapping pooling.

AlexNet has 60 million parameters and 650,000 neurons.

In the ILSVRC 2010, it achieved the top-1 and top-5 error rates of 37.5 % and 17.0%,
respectively.

AlexNet was named after Alex Krizhevsky, the main coauthor of the AlexNet paper [1].

Important Convolutional Neural Networks 6 / 32



AlexNet

credit of image: [1]

Important Convolutional Neural Networks 7 / 32



AlexNet

The loss function of AlexNet is maximization of the multinomial logistic regression. If for
a data instance x i , the target class label is ℓ, then it maximizes the ℓ-th output neuron in
the softmax:

max
θ

P(yi = ℓ) =
eoℓ∑1000
j=1 eoj

=⇒ min
θ

−P(yi = ℓ) = −
eoℓ∑1000
j=1 eoj

, (2)

where oj denotes the j-th output of network before the softmax activation function.

Important Convolutional Neural Networks 8 / 32



VGG

Important Convolutional Neural Networks 9 / 32



VGG

VGG neural network was proposed by a team named Visual Geometry Group (VGG) at the
University of Oxford [2].

VGG addresses the depth of a neural network. It increased the depth of neural network to
a very long depth in order to have more learnable parameters to handle the nonlinear
patterns of data better. Of course, after increasing the learnable parameters, it used more
training dataset not to have the problem of overfitting.

For increasing the depth of network, it added many convolutional layers.

In other words, VGG can be considered as a convolutional neural network with too many
convolutional layers.

VGG uses very small convolutional filter kernels with size 3× 3. This small size of kernels
was because of avoiding overfitting because having very deep network with large kernels
will increase the number of learnable parameters too much which results in overfitting
because of not having sufficient training data for learning.

Important Convolutional Neural Networks 10 / 32



VGG

Network architecture of VGG:

The means of RGB images of size 224× 224× 3 are subtracted from the images as a
pre-processing. This makes the mean of data zero.

Most of the kernels were of size 3× 3. A few ones were also of size 1× 1 which means a
linear transformation of features. The stride of convolution is set to 1. For the 3× 3
convolutions, padding size is 1.

Max pooling is used with width 2 and stride 2 so it is a non-overlapping pooling.

In various versions of VGG, the number of convolutional layers differ but this number is
usually large.

After the convolutional layers, there are three fully connected layers. The first two fully
connected layers have 4096 neurons and the last layer has 1000 layers for classification
into 1000 classes.

All hidden layers have ReLU activation function [10] and the last layer has softmax
activation function.

All versions of VGG, except one of them, do not use the local response normalization used
in AlexNet. This is because they empirically found out that having this normalization does
not improve the performance on the ILSVRC dataset.

Important Convolutional Neural Networks 11 / 32



VGG

Mini-batch stochastic gradient descent with momentum was used for training VGG. The
batch size was 256. Note that the batch size is usually set to a number which is a power
of 2. The momentum parameter was set to 0.9 to have high momentum in VGG. This is
set to number close to one not to have much oscillation in training.

Weight decay with ℓ2 norm was used for regularization. The regularization parameter of
weight decay was set to 5× 10−4. Note that the regularization parameter is usually a very
small number not to waive the impact of the actual loss function.

The initial learning rate was 10−2 and it was decreased by a factor of 10 (divided by 10)
every time the validation accuracy stopped improving. Note that the learning rate should
be small enough not to have oscillation but not too small so there is progress in training.

credit of image: [5]

Important Convolutional Neural Networks 12 / 32



Inception and
GoogLeNet

Important Convolutional Neural Networks 13 / 32



Inception and GoogLeNet

Inception is a module of neural network proposed in [3].

The same paper proposed GoogLeNet composed of Inception modules.

The name of GoogLeNet has two inspirations. The first inspiration is the name of Google
as it was proposed by Google employees. The second inspiration is the LeNet [11] network
which is one of the first successful convolutional networks.

In the ILSVRC 2014, GoogLeNet achieved the top result and won the competition.

There are two ways to increase the number of learnable parameters in a neural network.
Either the depth of the network or the number of hidden neurons can be increased or both.

This increase in the number of learnable parameters has two drawbacks. First, it makes
the network prone to overfitting especially if there are not sufficient labeled training data
(and labeling data is time and resource consuming). Second, more parameters need more
training requiring more computational resource.

For resolving these two drawbacks, the Inception module was introduced which inserts
sparsity to the network. This is also beneficial for the “betting on sparsity principal”
[12, 13], the Occam’s razor [14],

Important Convolutional Neural Networks 14 / 32



Inception and GoogLeNet
It is possible to suppose that every neuron in the previous layer of a layer corresponds to
some region of the input image.

On the one hand, in the initial layers of network, the correlated neurons concentrate in a
single region. As a result, many clusters of neurons concentrate in a single region. These
clusters for a single region can be covered by a layer of 1× 1 convolution. Note that a
1× 1 convolution can be seen as a linear transformation of features.

On the other hand, there are a smaller number of more spatially spread clusters of
neurons which can be covered together by convolution on larger patches.

Note that the larger and more spread the regions are, the less the number of the cluster
is. Therefore, only small convolutional kernels are used. This explains why the Inception
module is sparse as it does not use large convolutional kernels which are denser.

Therefore, for the above explanations, the Inception module uses convolutions with filter
sizes 1× 1, 3× 3, and 5× 5.

Moreover, because of the benefits of pooling discussed before, 3× 3 max pooling is also
used.

Important Convolutional Neural Networks 15 / 32



Inception and GoogLeNet
GoogLeNet stacks the Inception modules as its layers.

The number of 1× 1, 3× 3, and 5× 5 convolutions can change in the Inception module
depending on where it is used in the network.

In the higher layers close to the output of network, more abstract features are extracted;
therefore, the larger convolutional kernels are required more in the higher layers. As a
result, the Inception modules in higher layers of network should contain more 3× 3 and
5× 5 convolutions compared to 1× 1 convolution.

However, having larger convolutional kernels results in too much computational
complexity because for example the 5× 5 convolution is applied on the result of the 5× 5
convolution in the previous layer. Having multiple layers of these large convolutions results
in computational blow up. To resolve this problem, dimensionality reduction by 1× 1
convolution (linear transformation of features) is added in the Inception module not to
have computational blow up in complexity. In other words, 1× 1 convolutions are added
before the expensive 3× 3 and 5× 5 convolutions and after the 3× 3 max pooling.

Important Convolutional Neural Networks 16 / 32



Inception and GoogLeNet

Network architecture of GoogLeNet:

The means of RGB images of size 224× 224× 3 are subtracted from the images as a
pre-processing. This makes the mean of data zero.

GoogLeNet is a stack of Inception modules as its layers.

All the convolutions, including the ones within the Inception modules, use the ReLU
action function [10].

credit of image: [3]

Important Convolutional Neural Networks 17 / 32



U-Net

Important Convolutional Neural Networks 18 / 32



U-Net
U-Net was proposed in [4] for a biomedical image processing application which was
biomedical image segmentation.

It was a winning submission for the ISBI challenge for segmentation of neural structures in
electron microscopic stacks.

It is named U-Net because its shape is like the letter U.

A U-Net has a contracting path (like the downward edge of the letter U) and a symmetric
expanding path (like the upward edge of the letter U).

The contracting path is for capturing the context and the expanding path is for precise
localization.

Important Convolutional Neural Networks 19 / 32



U-Net
The network architecture of U-Net:

The contracting path:
▶ The layers have 3× 3 convolutions followed by ReLU activation functions [10].
▶ After every two 3× 3 convolution followed by ReLU activation function, max

pooling of width 2 and stride 2 is used for down-sampling.
▶ At every down-sampling, the number of feature channels is doubled.

The expansive path:
▶ The layers have 3× 3 convolutions followed by ReLU activation functions [10].
▶ After every two 3× 3 convolution followed by ReLU activation function, a 2× 2

up-convolution (reverse of convolution) (also called transpose convolution) is used
for up-sampling.

▶ At every up-sampling, the number of feature channels is halved.
▶ After every up-sampling, the result of up-sampling is concatenated with the cropped

output of the corresponding layer in the contracting path. Cropping is required
because the border pixels are removed at every convolution.

Important Convolutional Neural Networks 20 / 32



U-Net

An example of transpose convolution (credit of image:
https://d2l.ai/chapter_computer-vision/transposed-conv.html):

U-Net was primarily implemented in the Caffe library for deep learning [15].

Because of the large input tiles of biomedical images, the batch size was set to one in
U-Net.

Similar to VGG, U-Net also sets the momentum parameter to 0.9 to have high momentum
and less amount of oscillation in training.

The final feature map of U-Net has the same size as the input image. The final feature
map has c number of channels, with softmax activation function, where c is the number
of classes in image segmentation. The loss function of U-Net is cross entropy for
classification of the pixels into one of the classes of segmentation.

Important Convolutional Neural Networks 21 / 32

https://d2l.ai/chapter_computer-vision/transposed-conv.html


ResNet

Important Convolutional Neural Networks 22 / 32



ResNet

It has been empirically observed that, in very deep neural networks (e.g., with more than
20 layers), by increasing the depth of network, accuracy saturates and then degrades
rapidly. In other words, by adding more layers to very deep networks, the training error
increases. This problem is referred to as the degradation problem.

The degradation problem is surprising. This is because a neural network with additional
layers is a special case of the shallower network. In other words, if the shallow network is
sufficient for learning, the additional layers are supposed to become identical mapping by
optimization in backpropagation. However, this problem surprisingly exists.

Residual Network (ResNet) was proposed in [5] which uses deep residual learning for
resolving the degradation problem.

Important Convolutional Neural Networks 23 / 32



ResNet
In the regular networks, It is hoped that each few stacked layers directly fit a desired
underlying mapping.

In the deep residual learning, however, each few stacked layers fit a residual mapping
rather than the direct mapping.

Let the desired original underlying mapping be denoted by H(x) for the input x to the
stacked layers. In deep residual learning, the stacked nonlinear layers fit another mapping:

F(x) := H(x)− x . (3)

Therefore, the desired original underlying mapping is:

H(x) = F(x) + x . (4)

Benefit of ResNet: in backpropagation, gradient can flow directly through the identity
function from the next layers to the previous layers.

The deep residual learning postulates that it is easier to optimize the residual mapping
than to optimize the desired original underlying mapping which is unreferenced.
Empirically, this postulation has been approved to be correct.

Important Convolutional Neural Networks 24 / 32



ResNet

Variants of ResNet: ResNet 18, ResNet 34, ResNet 50, ResNet 101. Choose based on
your computer, memory, CPU, application, and data.

Comparison of archtectures of regular net, VGG, and ResNet:

credit of image: [5]

Important Convolutional Neural Networks 25 / 32



DenseNet

Important Convolutional Neural Networks 26 / 32



DenseNet
Empirically, it is observed that convolutional neural networks can become deeper, more
accurate, and efficient to train if there exist shorter connections between the initial layers
and the last layers.

In Dense Convolutional Network (DenseNet) [6], every layer is connected to every other
layer.

In a regular network with l layers, the number of weight matrices is l as every layer is
connected to its next subsequent layer.

In DenseNet, however, there are l(l + 1)/2 weight matrices between the layers as every
layer is connected to all its next layers and not merely its next subsequent layer.

credit of image: [6]

Important Convolutional Neural Networks 27 / 32



DenseNet

The benefits of DenseNet:
▶ alleviate the gradient vanishing problem. This is because, in backpropagation,

gradient can flow directly through all layers to every other previous layers.
▶ strengthen feature propagation
▶ encourage feature reuse
▶ reduce the number of learnable parameters. This is because DenseNet requires less

number of layers than regular networks as it already has enough learnable
parameters between the layers.

Let Fℓ(x) denote the composite function of batch normalization [16], convolution, ReLU
activation function [10], and possibly pooling at the layer ℓ.

ResNet uses:

xℓ = Fℓ(xℓ−1) + xℓ−1. (5)

However, DenseNet uses the concatenation of outputs of all previous layers at every layer:

xℓ = Fℓ

(
[x0, x1, . . . , xℓ−1]

⊤)
. (6)

In other words, it uses direct connections from each layer to all subsequent layers.

Important Convolutional Neural Networks 28 / 32



DenseNet
DenseNet is composed of several dense blocks where in each dense block, every layer is
connected to all its subsequent layers.

There are transition layers between the dense blocks which perform convolution followed
by pooling.

In the dense blocks, the composite function Fℓ(x) specifically consists of batch
normalization [16], 3× 3 convolution, and ReLU activation function [10].

Every transition layer consists of batch normalization [16], 1× 1 convolution, and average
pooling with width 2. The last transition layer, however, is an average pooling followed by
a linear layer (with softmax activation function) whose number of neurons is the number
of classes.

In the dense block, every convolution has some number of channels. This number of
channels is named growth rate in the paper of DenseNet [6]. The ℓ-th layer in a dense
block has k0 + k(ℓ− 1) input feature maps where k0 is the number of channels in the
input data and k is the growth rate in all previous layers inside the block.

It is empirically observed that a small growth rate (e.g., k = 12) is sufficient for DenseNet
[6].

Important Convolutional Neural Networks 29 / 32



References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90,
2017.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

[3] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1–9, 2015.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” in Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pp. 234–241, Springer, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[6] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4700–4708, 2017.

Important Convolutional Neural Networks 30 / 32



References (cont.)

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “ImageNet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, pp. 211–252, 2015.

[8] K. Crowston, “Amazon mechanical turk: A research tool for organizations and information
systems scholars,” in Shaping the Future of ICT Research. Methods and Approaches: IFIP
WG 8.2, Working Conference, Tampa, FL, USA, December 13-14, 2012. Proceedings,
pp. 210–221, Springer, 2012.

[9] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The Pascal
visual object classes (VOC) challenge,” International journal of computer vision, vol. 88,
pp. 303–338, 2010.

[10] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,”
in Proceedings of the 27th international conference on machine learning (ICML-10),
pp. 807–814, 2010.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[12] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning: Data
Mining, Inference, and Prediction, vol. 2.
Springer series in statistics, New York, NY, USA, 2009.

Important Convolutional Neural Networks 31 / 32



References (cont.)

[13] R. Tibshirani, M. Wainwright, and T. Hastie, Statistical learning with sparsity: the lasso
and generalizations.
Chapman and Hall/CRC, 2015.

[14] P. Domingos, “The role of Occam’s razor in knowledge discovery,” Data mining and
knowledge discovery, vol. 3, no. 4, pp. 409–425, 1999.

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and
T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proceedings
of the 22nd ACM international conference on Multimedia, pp. 675–678, 2014.

[16] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International conference on machine learning,
pp. 448–456, pmlr, 2015.

Important Convolutional Neural Networks 32 / 32


