
Deep Reinforcement Learning

Deep Learning (ENGG*6600*07)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Fall 2023

Deep Reinforcement Learning 1 / 58

Introduction

Deep Reinforcement Learning 2 / 58

Introduction

Reinforcement Learning (RL) [1] is an area in machine learning where one or several
agents take actions in an environment to maximize their cumulative reward.

In other words, RL is learning to make decisions from interactions.

If there are multiple agents cooperating with each other, i.e., learning the environment
together, reinforcement learning is called Multi-Agent Reinforcement Learning (MARL)
[2].

It is like how animals, such as dogs, are trained. Suppose we want to train a dig. Food
and hunger can be used as positive and negative rewards, respectively, to teach it to
perform some particular actions in specific situations. As a result, the dog is trained using
reinforcement. In reinforcement learning, the machine is like a dog which is trained to
perform suitable actions in the situations of the environment.

Deep Reinforcement Learning 3 / 58

Elements of Reinforcement Learning
Reinforcement learning contains some elements. In the following, some examples of these
elements are introduced in the game of tic-tac-toe.

▶ environment: the environment in which the agents play
▶ action: the action which the agents play
▶ state: an state or realization of the environment. The environment has a state at

every particular time.
⋆ The state s can be a vector or matrix representing the state of environment.

For example, in tic-tac-toe, it is a nine-dimensional vector whose every
element can get one of three values (one value for cross, one value for circle,
and one value for empty). In inverted pendulum, the state is four-dimensional
vector having the values for position, velocity, angle, and angular velocity. In
Atari games, it can be the frame (RGB image) of the game at the current
time. In the game of Go or chess, it can be a matrix or reshaped vector
having values for the cells of the board game.

▶ reward: the reward that the agents get when they play some action. Better actions
have more rewards.

Deep Reinforcement Learning 4 / 58

Markov Decision
Process

Deep Reinforcement Learning 5 / 58

Markov Process

Consider a times series of random variables s1, s2, . . . , sn. In general, the joint probability
of these random variables can be written as:

P(s1,s2, . . . , sn) = P(s1)P(s2 | s1)P(s3 | s2, s1) . . .P(sn | sn−1, . . . , s2, s1), (1)

according to chain (or multiplication) rule in probability.

(The first order) Markov property is an assumption which states that in a time series of
random variables s1, s2, . . . , sn, every random variable is merely dependent on the latest
previous random variable and not the others [3]. In other words:

P(si | si−1, si−2, . . . , s2, s1) = P(si | si−1). (2)

Hence, with Markov property, the chain rule is simplified to:

P(s1, s2, . . . , sn) = P(s1)P(s2 | s1)P(s3 | s2) . . .P(sn | sn−1). (3)

The Markov property can be of any order. For example, in a second order Markov
property, a random variable is dependent on the latest and one-to-latest variables. Usually,
the default Markov property is of order one. A stochastic process which has the Markov
property is called a Markovian process or a Markov process.

Deep Reinforcement Learning 6 / 58

Markov Decision Process

Markov Decision Process (MDP) is a decision process which is Markov process, too. In
other words, every state is conditioned on only the previous state in MDP where all the
past information is assumed to eb encapsulated in the previous state.

An MDP is defined by a tuple {S ,A,R,P, γ}:
▶ States: s ∈ S

▶ Actions: a ∈ A

▶ Rewards: r ∈ R, reward model: P(rt |st , at)
▶ Transition model: P(st |st−1, at−1)

▶ Discount factor: γ ∈ [0, 1]
⋆ discounted: γ < 1, undiscounted: γ = 1

⋆ discounted rewards: r0 + γr1 + γ2r2 + . . .

Note that the total reward is important and not merely the short-term reward. sometimes,
it is better to sacrifice immediate reward to gain more long-term reward. An example is
playing chess where a player may sacrifice their queen to win the chess in ten later moves.

Deep Reinforcement Learning 7 / 58

Markov Decision Process
At every time slot t ∈ {0, 1, 2, . . . }, the agent is at state st .

It takes an action at .

By this action, it moves to a new state st+1, according to st+1 ∼ P(st+1|st , at).
It recieves some reward rt ∼ P(rt |st , at).
A policy π is a mapping from states to actions:

π : S → A, π : s 7→ a. (4)

▶ In other words, it determines what action should be performed at every state of the
environment.

▶ We can have deterministic policy:

at = π(st), (5)

or a stochastic policy:

at = π(at |st). (6)

The goal of MDP is to find a policy π∗ which maximizes the long-term reward:

π∗ = argmax
π

h∑
t=0

γtEπ[rt], (7)

where t is the time slot index, h is the horizon, and Eπ[.] denotes expectation with
respect to policy.

Deep Reinforcement Learning 8 / 58

Bellman’s Equation

Deep Reinforcement Learning 9 / 58

Bellman’s Equation
Value is defined to be the maximum or best reward that the agent can get in some state.
Therefore, value is in the essence of reward. The value at state st and time t is denoted
by v(st) or vt(s).

Consider a time period or horizon h. The last time slot of this horizon is at time t and its
value is:

v(st) = max
at

r(st , at).

The value at one-to-last time slot of the horizon is:

v(st−1) = max
at−1

r(st−1, at−1) + γP(st |st−1, at−1) v(st).

The value at two-to-last time slot of the horizon is:

v(st−2) = max
at−2

r(st−2, at−1) + γP(st−1|st−2, at−2) v(st−1),

and so on. This series can be generalized into the following equation, named the
Bellman’s equation:

v(st) = max
at

r(st , at) + γ
∑
st+1

P(st+1|st , at) v(st+1). (8)

Deep Reinforcement Learning 10 / 58

Bellman’s Equation

We found the Bellman’s equation:

v(st) = max
at

r(st , at) + γ
∑
st+1

P(st+1|st , at) v(st+1).

In the literature of reinforcement learning, the variable at the next time slot (t + 1) is also
denoted by a prime at the variable while the variable at the current time slot t is denoted
without prime. For example, the states st and st+1 are also denoted by s and s′,
respectively.

The value also may have the superscript π, i.e., vπ(s), showing that its policy is π.

Therefore, another notation of this equation is:

v(s) = max
a

r(s, a) + γ
∑
s′

P(s′|s, a) v(s′). (9)

It is also sometimes denoted using expectation:

v(s) = E[r |s, π(s)] + γ
∑
s′

P(s′|s, π(s)) v(s′), (10)

where π(s) = a.

Deep Reinforcement Learning 11 / 58

Solving MDP

Deep Reinforcement Learning 12 / 58

Value Iteration
Recall that the goal of MDP is to find the optimal policy.

There are two ways to solve the MDP problem, i.e., to find the optimal policy. These two
approaches are value iteration and policy iteration.

Let h denote the horizon and t denote the time slot in the horizon. The algorithm of
value iteration calculates the optimal values backwards in the horizon:

Algorithm Value iteration

v∗
0 ← max

a
r(s, a), ∀s

for t from 1 to h do
v∗
t (s)← max

a
r(s, a) + γ

∑
s′ P(s′|s, a) v∗

t−1(s
′), ∀s

Return v∗
h

After finding the optimal value by value iteration, the optimal policy can be found for the
last time slot and other time slots in the horizon:

t = 0 : π∗
0 (s)← argmax r(s, a), ∀s,

t > 0 : π∗
t (s)← max

a
r(s, a) + γ

∑
s′

P(s′|s, a) v∗
t−1(s

′), ∀s. (11)

As it is obvious from the above equations, the optimal policy π∗ is non-stationary, i.e., it
is time-dependant.

Deep Reinforcement Learning 13 / 58

Policy Iteration

Another way to find the optimal policy in MDP is policy iteration.

Policy iteration alternates between two steps iteratively until convergence. These two
steps are policy evaluation and policy improvement. Policy evaluation evaluates how
good the found policy is so far. Policy improvement improves the policy.

The algorithm of policy iteration is as follows.

Algorithm Policy iteration

Initialize π(s) with a random action for every state s.
while not converged do

vπ(s)← r(s, π(s)) + γ
∑

s′ P(s′|s, π(s)) vπ(s′), ∀s
π(s)← argmax

a
r(s, a) + γ

∑
s′ P(s′|s, a) vπ(s′), ∀s

Return vπ(s) and π(s)

Note that these equations are both the Bellman’s equation where, in policy evaluation,
the action a is replaced with the policy π(s) which is in the essence of action (because
policy is the mapping from state to action).

Deep Reinforcement Learning 14 / 58

Value Iteration vs. Policy Iteration

In value iteration, the policy evaluation step is repeated during the horizon to maximize
the value vπ(s) and then policy improvement step is performed only once to find the
optimal policy. In policy iteration, however, policy evaluation and improvement are
repeated alternatively until convergence.

The time complexities of every iteration in value iteration and policy iteration are
O(|S |2|A|) and O(|S |3 + |S|2|A|), respectively, where |S | is the number of states and |A|
is the number of actions. The number of iterations in value iteration and policy iteration
are linear convergence and quadratic convergence, respectively. As a result, compared to
policy iteration, value iteration has less computation at every iteration but it needs more
number of iterations.

Deep Reinforcement Learning 15 / 58

Modified Policy Iteration
Therefore, there is a method, named modified policy iteration, which is a middle case
scenario between value iteration and policy iteration to have the best of two worlds. The
modified policy iteration is more practical and it usually converges faster than value
iteration and policy iteration.

This algorithm is similar to the policy iteration algorithm except that it performs its policy
iteration step for multiple times, inspired by value iteration.

The algorithm of modified policy iteration is as follows:

Algorithm Modified policy iteration

Initialize π(s) with a random action for every state s.
while not converged do

for k times do
vπ(s)← r(s, π(s)) + γ

∑
s′ P(s′|s, π(s)) vπ(s′), ∀s

π(s)← argmax
a

r(s, a) + γ
∑

s′ P(s′|s, a) vπ(s′), ∀s

Return vπ(s) and π(s)

Note that these equations are both the Bellman’s equation where, in policy evaluation,
the action a is replaced with the policy π(s) which is in the essence of action (because
policy is the mapping from state to action).

Deep Reinforcement Learning 16 / 58

Reinforcement
Learning

Deep Reinforcement Learning 17 / 58

Reinforcement Learning

Reinforcement Learning (RL) is similar to MDP except that the transition model is not
known in it. Not having the transition model is more realistic as it is usually not available
in practice. As a result, RL is a harder task compared to MDP. It is defined by a tuple
{S ,A,R,P, γ}:

▶ States: s ∈ S

▶ Actions: a ∈ A

▶ Rewards: r ∈ R, reward model: P(rt |st , at)
▶ Discount factor: γ ∈ [0, 1]

⋆ discounted: γ < 1, undiscounted: γ = 1

⋆ discounted rewards: r0 + γr1 + γ2r2 + . . .

The goal of RL, so as in MDP, is also finding the optimal policy.

Deep Reinforcement Learning 18 / 58

Reinforcement Learning

There are two main approaches for finding the best policy in RL:
▶ Model-based RL [4]: it finds the model first and then solves the problem.

Specifically, it finds the transition model and the reward model and then solves the
problem.

▶ Model-free RL [5]: it finds the policy without the transition model and the reward
model. In the model-free RL, the model is unknown explicitly and it is implicitly
found to solve the problem.

Here, we go over the model-free RL algorithms.

Deep Reinforcement Learning 19 / 58

Temporal Difference
Evaluation

Deep Reinforcement Learning 20 / 58

Monte-Carlo Evaluation

In the model-free RL, the value vπ(s) should be estimated, given a policy π, without any
transition model.

Recall that value is the expected total rewards with respect to the policy:

vπ(s) = Eπ

[h∑
t=0

γt rt
] (a)
≈

1

n(s)

n(s)∑
k=1

[h∑
t=0

γt r
(k)
t

]
, (12)

where (a) is because of the Monte-Carlo approximation (evaluation) of expectation [6], h

is the horizon, n(s) is the number of times that the state s happens, and r
(k)
t is the

reward at time t in the horizon and the k-th episode. the larger the n(s), the more
accurate the approximation is.

For this Monte-Carlo evaluation of the value, the agent should play in the environment for
k times. An episode is referred to each time that the agent plays in the environment once
completely.

Deep Reinforcement Learning 21 / 58

Monte-Carlo Evaluation

For example, in the following game, the possible actions at every middle node is going left
or right stochastically. Let the rewards of nodes A and G be −1 and +1, respectively, and
the other nodes have reward zero. The game starts from node D. The policy is stochastic
left or right movements with different probabilities on the nodes.

For a particular policy (particular probabilities of actions on nodes), the game is played for
k episodes. Every episode is represented as a trajectory ending on either node A
or node G. The Monte-Carlo evaluation is the average of total rewards across the trajectories.

Deep Reinforcement Learning 22 / 58

Temporal Difference Evaluation
The problem with the Monte-Carlo evaluation is that it needs many iterations, i.e., a large
n(s), to be accurate. For addressing this problem, temporal difference, introduced in the
following, is used.

Let Gk be a one-trajectory Monte-Carlo evaluation of the value:

Gk :=
h∑

t=0

γt r
(k)
t , (13)

which is the total discounted reward.

According to Eq. (12), the value is:

vπ
n(s)(s) ≈

1

n(s)

n(s)∑
k=1

Gk (14)

=
1

n(s)

(
Gn(s) +

n(s)−1∑
k=1

Gk

)
(14)
=

1

n(s)

(
Gn(s) +

(
n(s)− 1

)
vπ
n(s)−1(s)

)
= vπ

n(s)−1(s) +
1

n(s)

(
Gn(s) − vπ

n(s)−1(s)
)
.

Therefore, the Monte-Carlo evaluation can be stated as an incremental update:

vπ
n (s) = vπ

n−1(s) + αn
(
Gn − vπ

n−1(s)
)
, (15)

where n is the simplified notation of n(s) and αn := 1/n(s).

Deep Reinforcement Learning 23 / 58

Temporal Difference Evaluation

We found:

vπ
n (s) = vπ

n−1(s) + αn
(
Gn − vπ

n−1(s)
)
.

The temporal difference evaluation is similar to the incremental update except that it
replaces Gn with r + γvπ

n−1(s
′) where s′ is the next state at time t + 1. This replacement

makes sense because, according to Eq. (13), Gn is the value (or total rewards) of a
trajectory. In other words, recall the Bellman’s equation in Eq. (10). Gn is the
Monte-Carlo evaluation of the value using only one trajectory, which is not a very
accurate approximation:

v(s) = E[r |s, π(s)] + γ
∑
s′

P(s′|s, π(s)) v(s′) ≈ r + γvπ(s′), (16)

where that one trajectory has only one s′ in it.

Therefore, the temporal difference evaluation is formulated as:

vπ
n (s) = vπ

n−1(s) + αn
(
r + γvπ

n−1(s
′)− vπ

n−1(s)
)
. (17)

Deep Reinforcement Learning 24 / 58

Temporal Difference Evaluation

Theorem
If αn is appropriately decreased with the number of times a state is visited, then vπ

n (s)
converges to the correct value. Sufficient conditions for αn are:

lim
k→∞

k∑
n=1

αn =∞, (18)

lim
k→∞

k∑
n=1

(αn)
2 <∞. (19)

αn is called the learning rate and it can be any function of n satisfying the above
sufficient conditions. Often, αn = 1/n(s) is used where n(s) is the number of times the
state s is visited.

Deep Reinforcement Learning 25 / 58

Temporal Difference Evaluation

Instead of trying to calculate total future reward, temporal difference simply tries to
predict the combination of immediate reward and its own reward prediction at the next
moment in time.

When the next moment comes, the new prediction is compared against what it was
expected to be. In other words, the temporal difference is calculated.

This temporal difference is used to adjust the old prediction toward the new prediction.

An example of using temporal difference is as follows. Consider weather prediction where
the temperatures of all days in the coming week are predicted. When one of the days of
the week arrives, the predicted temperature of that day can be compared with the actual
temperature of that day. If the difference between them is small, it means that the
prediction was accurate but if the difference is large, the predicted temperature of later
days should be adjusted based on that calculated error. Assume the predicted temperature
of Tuesday was 19 and the actual temperatures of Monday and Tuesday are 20 and 23.
The temporal difference evaluation says that the predicted temperature of Tuesday should
be adjusted to 20 + α(23− 19) where α > 0 is some small multiplier.

Deep Reinforcement Learning 26 / 58

Temporal Difference Evaluation

The algorithm of temporal difference evaluation of value is as follows:

Algorithm Temporal difference evaluation

Input: policy π
while vπ is not converged do

Execute π(s)
Observe s and s′

n(s)← n(s) + 1
α← 1/n(s)
vπ(s)← vπ(s) + α

(
r + γvπ(s′)− vπ(s)

)
s ← s′

Return vπ

As the temporal difference evaluation of value is making use of the incremental updates, it
has much less computation compared to the Monte-Carlo evaluation of value. The
Monte-Carlo evaluation requires to calculate the total trajectori(es) but temporal
difference only calculates the differences of values of successive states along the trajectory.

Deep Reinforcement Learning 27 / 58

Q-Function

Deep Reinforcement Learning 28 / 58

Q-Function
Instead of evaluating the state value vπ(s), it is possible to evaluate the state-action
value Qπ(s, a). The state-action value is called the Q-function.

The state value shows how good it is to be in a particular state s. The Q-function,
however, determines how good it is to perform action a, following the policy π, in the
state s.

Recall the Bellman’s equation for the state value v(s), introduced in Eq. (10):

v(s) = E[r |s, a] + γ
∑
s′

P(s′|s, a) v(s′).

Likewise, the Bellman’s equation for the state-action value (Q-function) is:

Q(s, a) = E[r |s, a] + γ
∑
s′

P(s′|s, a) max
a′

Q(s′, a′), (20)

where a′ is the next action in the next time slot.

As a result, according to the Bellman’s equation, the optimal state value and the optimal
Q-function are:

v∗(s) = E[r |s, a] + γ
∑
s′

P(s′|s, a) v∗(s′), (21)

Q∗(s, a) = E[r |s, a] + γ
∑
s′

P(s′|s, a) max
a′

Q∗(s′, a′). (22)

Deep Reinforcement Learning 29 / 58

Q-Function

If Q-function is used, then the optimal value v∗(s) and the optimal policy π∗ is then
found by maximizing the Q-function:

v∗(s) = max
a

Q∗(s, a), (23)

π∗(s) = argmax
a

Q∗(s, a). (24)

Maximizing the Q-function for finding the optimal policy is roughly in the form of Eq. (7):

π∗ = argmax
π

h∑
t=0

γtEπ[rt],

which found the policy by maximizing the value or the total rewards.

Deep Reinforcement Learning 30 / 58

Q-Function
Recall Eq. (15) which was the incremental update for the state value:

vπ
n (s) = vπ

n−1(s) + αn
(
Gn − vπ

n−1(s)
)
,

Likewise, it is possible to have incremental update for the Q-function:

Qπ
n (s, a) = Qπ

n−1(s, a) + αn
(
Gn − Qπ

n−1(s, a)
)
, (25)

where Gn is a one-trajectory Monte-Carlo evaluation of the value, defined in Eq. (13):

Gn :=
h∑

t=0

γt r
(n)
t .

As a result, the policy iteration algorithm using incremental update of Q-function is as
follows, where the algorithm alternates between policy evaluation and policy improvement
steps:

Algorithm Policy iteration using Q-function

Initialize Qπ(s, a) with a random value for every state s and action
a.
while not converged do

Qπ(s, a) = Qπ(s, a) + αn
(
Gn − Qπ(s, a)

)
, ∀s

π(s)← argmax
a

Qπ(s, a), ∀s

Return Qπ(s, a) and π(s)

Deep Reinforcement Learning 31 / 58

Q-Learning

Deep Reinforcement Learning 32 / 58

Q-Learning
Recall Eq. (16) which approximated the Monte-Carlo evaluation of the value using only
one trajectory:

v(s) = E[r |s, π(s)] + γ
∑
s′

P(s′|s, π(s)) v(s′) ≈ r + γvπ(s′),

Likewise, this approximation for the Q-function is:

Q(s, a)
(20)
= E[r |s, a] + γ

∑
s′

P(s′|s, a) max
a′

Q(s′, a′) ≈ r + γmax
a′

Q(s′, a′). (26)

As a result, the temporal difference evaluation of the Q-function is:

Q∗
n (s, a) = Q∗

n−1(s, a) + αn
(
r + γmax

a′
Q∗

n−1(s
′, a′)− Q∗

n−1(s, a)
)
. (27)

which is similar to the temporal difference for state value in Eq. (17).

It is noteworthy that the Q-function is updated merely by observing s, s′, a, and r based
on temporal difference. This leads to the Q-learning algorithm in the following.

It is also worth comparing the updates in Q-learning and value iteration:

v∗
n (s)← max

a
r(s, a) + γ

∑
s′

P(s′|s, a) v∗
n−1(s

′).

Value iteration is for MDP but Q-learning is for RL. In MDP, the transition model is
known but RL does not have the transition model; therefore, RL updates the Q-function
which depends on both state and action.

Deep Reinforcement Learning 33 / 58

Q-Learning

Algorithm Q-learning

while Q∗ is not converged do
Select and execute action a
Observe s′ and r
n(s, a)← n(s, a) + 1
α← 1/n(s, a)
Q∗

n (s, a) = Q∗
n−1(s, a)+αn

(
r +γmaxa′ Q

∗(s′, a′)−Q∗(s, a)
)

s ← s′

Return Qπ(s, a)

The n(s, a) is the number of times the state s and action a are observed together.

The learning rate α > 0 can be any function of n(s, a) satisfying the sufficient conditions
in the theorem. A common choice is 1/n(s, a).

Deep Reinforcement Learning 34 / 58

Q-Learning

Algorithm Q-learning

while Q∗ is not converged do
Select and execute action a
Observe s′ and r
n(s, a)← n(s, a) + 1
α← 1/n(s, a)
Q∗

n (s, a) = Q∗
n−1(s, a)+αn

(
r +γmaxa′ Q

∗(s′, a′)−Q∗(s, a)
)

s ← s′

Return Q∗(s, a)

There are two approaches for selecting the action a in Q-learning:
▶ either choose action a at state s randomly,
▶ or choose action a which maximizes the Q-function.

The former approach is for exploration which takes time to converge.

The latter approach is for exploitation which converges faster but it may get stuck in the
local best solutions without finding the global best solution.

Therefore, it is better to have a combination of the two approaches for selecting actions in
order to use the benefits of both approaches. For example, it is possible to use the first
approach for exploration in the initial iterations and then to use the second approach for
exploitation in later iterations. This is because initially, the algorithm should explore the
possibilities but later, it is supposed to be closer to the best solution and it should not
oscillate much around the solution.

Deep Reinforcement Learning 35 / 58

Q-Learning: Example
We had:

Q∗
n (s, a) = Q∗

n−1(s, a) + αn
(
r + γmax

a′
Q∗(s′, a′)− Q∗(s, a)

)
.

Example for Q-learning:

Assume the current Q-function at this iteration for the states and actions are as follows:

Q(D, right) = 16,Q(D, left) = 10,Q(E, right) = 20,Q(E, left) = 15.

Assume, at the current iteration of Q-learning, we are at state D and we choose action
“moving to right”. So, the next state is E and the reward is 0 for state D:

s = D, a = right, s′ = E, r = 0.

Assume n(D, right) = 2 so far and let the discount factor is γ = 0.9. in this iteration. By
performing this action at this state, the Q(D, right) is updated from 16 to 17 as:

Q∗
n (D, right) = Q∗

n−1(D, right) + αn
(
r + γmax

a′
Q∗(E, a′)− Q∗(D, right)

)
= 16 + (1/2)(0 + (0.9×max{20, 15})− 16) = 17,

which makes sense because it is better to move right to hopefully end up in state G
eventually.

Deep Reinforcement Learning 36 / 58

Q-function Approximation
The Q-function can be approximated by any linear or nonlinear function.

For example, it can be approximated by a neural network which is a nonlinear function.
Let Qw (s, a) be the approximated Q-function with parameters w ; for example, it is a
neural network with weights w .

Recall Eq. (27):

Q∗
n (s, a) = Q∗

n−1(s, a) + αn
(
r + γmax

a′
Q∗

n−1(s
′, a′)− Q∗

n−1(s, a)
)
,

in which the temporal difference is the difference between r + γmaxa′ Q
∗
n−1(s

′, a′) and

Q∗
n−1(s, a). Therefore, r + γmaxa′ Qw (s′, a′) can be the target where the Q-function

estimate Qw (s, a) needs to get close to.

As a result, the loss function of the neural network can be the mean squared error
between these two terms:

ℓ(w) =
1

2

(
Qw (s, a)− r − γmax

a′
Qw (s′, a′)

)2
. (28)

This loss function has a problem. Both Qw (s, a) and r + γmaxa′ Qw (s′, a′) contain the
weights w ; therefore, changing the weights w modifies both the function estimate and the
target. In this sense, the target becomes a moving target. It has been empirically
observed that if the Q-function is linear, minimizing this loss function converges but if it is
nonlinear, it may not converge.

Deep Reinforcement Learning 37 / 58

Gradient Q-learning

There are two approaches to resolve the problem of moving target.

In the first approach, the Q-function in the target can be fixed and gets updated every k
iterations. The estimated Q-function, however, gets updated by optimization in every
iteration. In practice, this approach can be implemented using two neural networks –
Q-value estimate network and target network – are used rather than one network. Let the
weights of the Q-value estimate network and the target network be denoted by w and w̄ ,
respectively. The loss function becomes:

ℓ(w) =
1

2

(
Qw (s, a)− r − γmax

a′
Qw̄ (s′, a′)

)2
. (29)

Backpropagation is gradient decent and chain rule. The gradient of this loss function is:

∂ℓ(w)

∂w
=

(
Qw (s, a)− r − γmax

a′
Qw̄ (s′, a′)

)∂Qw (s, a)

∂w
. (30)

Deep Reinforcement Learning 38 / 58

Gradient Q-learning

Algorithm Gradient Q-learning

Initialize w and w̄
Observe the current state s
while not converged do

Select and execute action a
Observe the new state s′
∂ℓ(w)
∂w =

(
Qw (s, a)− r − γmaxa′ Qw̄ (s′, a′)

) ∂Qw (s,a)
∂w

w ← w − α
∂ℓ(w)
∂w

s ← s′

if it is every k iterations then
Update w̄

Return Qw (s, a)

In this algorithm, α > 0 is the learning rate of optimization.

Updating w̄ can be performed either by optimizing w̄ in the target neural network or it
can be updated by coping the weights of the target network to the Q-value estimate
network (w̄ ← w) in case the two networks have the same structure.

Deep Reinforcement Learning 39 / 58

Experience Replay

Another approach for resolving the problem of moving target is experience replay. In this
approach, the previous experiences {s, a, s′, r} are stored in a buffer and a mini-batch of
previous experiences is sampled at every iteration of gradient Q-learning.

This approach uses the same weights and one network for the Q-value estimate function
and the target.

By using the previous experiences, the target function which is optimized does not change
dramatically. In other words, this reduces the effect of the moving target.

Both approaches of using two networks and using experience replay usually work in
practice but they do not have any theoretical guarantee for convergence.

Deep Reinforcement Learning 40 / 58

Deep Q-Network

The first paper which implemented gradient Q-learning by a deep neural network was
Deep Q-Network (DQN) (2013) [7, 8].

This paper is also considered as the first algorithm in Deep Reinforcement Learning (DRL).

DRL is RL where the Q-function, or value-function, or policy function is estimated using a
neural network as a estimator function; therefore, DRL is basically not different from RL
except that its function estimator is a neural network.

Deep Reinforcement Learning 41 / 58

Deep Q-Network

DQN plays the Atari games in a human-level where the trained network can play even
better than humans.

The input of DQN is the frame of Atari game at the every time slot. DQN is a
convolutional neural network approximating the Q-function. The output neurons of the
network correspond to the possible actions performable on the joystick of Atari. Softmax
activation function is used in the last layer to output the probability of actions and the
action with largest probability determines the action at the current time slot.

Credit of image: [8]

Deep Reinforcement Learning 42 / 58

Policy Gradient

Deep Reinforcement Learning 43 / 58

Policy Gradient
Q-learning is a model-free value-based method. In Q-learning, the value function or
Q-function is explicitly learned and the policy function is implicit.

Policy gradient, however, is a model-free policy-based algorithm. In policy gradient, the
policy function is explicitly learned and the value function or Q-function is implicit.

Note that both Q-learning and policy gradient pursue the goal of RL which is finding the
best map of policy π : s 7→ a.

The policy gradient attempts to learn the policy function explicitly. The policy function
can be a deterministic (non-random) function π(s) = a or a stochastic (random) function
as a conditional probability π(a|s).
Each of these policy function have pros and cons. The deterministic function is usually a
discrete function but the stochastic policy is usually a smooth and continuous probabilistic
density function which is more suitable for learning. The stochastic policy function is also
more useful when the action space is continuous.

In general, the stochastic policy function can be used for both discrete and continuous
actions. For the discrete actions and the continuous actions, softmax function and
Gaussian distribution can be useful respectively:

πw (a|s) =
exp(f (s, a;w))∑
ā exp(f (s, ā;w))

, (31)

πw (a|s) = N
(
a |µ(s;w),Σ(s;w)

)
, (32)

where f (s, a;w) is estimator function of policy, with parameter w , before the softmax
function and µ(s;w) and Σ(s;w) are the Gaussian’s mean and covariance functions of
states with parameter w .

Deep Reinforcement Learning 44 / 58

Policy Gradient
In supervised learning, the desire is to learn πw (a|s) where the training data are the
state-action pairs, {(s1, a∗1), (s2, a∗2), . . . }, with the best actions as labels for the states.
The cross-entropy of softmax function can be minimized or the log-likelihood of Gaussian
distribution can be maximized. For example, maximization of log-likelihood in the forms
of one-shot optimization and temporal difference are:

w∗ = argmax
w

∑
n

log πw (a∗n |sn),

wn+1 ← wn + αn∇w log πw (a∗n |sn),
(33)

respectively, where ∇w (.) is the derivative operator with respect to w . This equation
updates the policy in supervised learning.

In RL, the desire is to learn πw (a|s) where the training data are the state-action-reward
triplets, {(s1, a1, r1), (s2, a2, r2), . . . }, where the rewards give a hint how good an action is
in that state. Policy gradient in RL maximizes the discounted summation of rewards in
the forms of one-shot optimization and temporal difference:

w∗ = argmax
w

∑
n

γn E[rn|sn, an],

wn+1 ← wn + αnγ
nGn∇w log πw (an|sn),

(34)

respectively, where E[.] is the expectation operator and Gn is the total reward defined in
Eq. (13), i.e., Gn =

∑∞
t=0 γ

t rn+t . This equation updates the policy in RL.

Deep Reinforcement Learning 45 / 58

Policy Gradient

We found:

wn+1 ← wn + αn∇w log πw (a∗n |sn),
wn+1 ← wn + αnγ

nGn∇w log πw (an|sn).

Comparing Eqs. (33) and (34) shows that, compared to supervised learning, RL scales the
gradient by the reward γnGn. If the reward is large, that direction of gradient is amplified
and the algorithm goes in that direction. However, if the reward is small, that direction of
gradient is ignored and the algorithm does not go in that direction.

Deep Reinforcement Learning 46 / 58

REINFORCE Algorithm

REINFORCE algorithm is one of the very first algorithms in RL, proposed in 1992 [9].

This algorithm is a policy gradient algorithm and it uses the temporal update in Eq. (34).

It plays the game or interacts with the environment for multiple times. Every time that
the game is completely played once is called an episode. Every episode has T steps where
T might differ in different episodes.

In this algorithm, α > 0 is the learning rate.

Algorithm REINFORCE algorithm

Initialize w
Observe the current state s
for each episode do

Generate (play) the episode
. {(s0, a0, r0), (s1, a1, r1), . . . , (sT , aT , rT)}
for n from 0 to T do

Gn ←
∑T−n

t=0 γt rn+t

w ← w + αγnGn∇w log πw (an|sn)

Return πw (a|s)

Deep Reinforcement Learning 47 / 58

AlphaGo: Game of Go
by Reinforcement
Learning

Deep Reinforcement Learning 48 / 58

AlphaGo: Game of Go by Reinforcement Learning

Game of Go is an Asian-originated game where two players alternate to place a stone on a
vacant (empty) intersection (dot). One player has white stones and one has black stones.

Connected stones which have no adjacent vacant intersection are removed.

The player who controls the largest intersections at the end of the game becomes the
winner.

This game is difficult for the computer because the board of game is 19× 19 (i.e., 361
intersections) where every intersection can either be vacant or have wight stone or black
stone. Therefore, its state space is very huge and has 3361 possibilities.

AlphaGo (2016) [10] uses deep reinforcement learning for playing the game of Go.

Deep Reinforcement Learning 49 / 58

AlphaGo: Game of Go by Reinforcement Learning
AlphaGo has a policy network for modeling π(a|s) where the input of the network is the
state s which is the configuration of the board.

The output of network is the distribution of actions a. The intersection with maximum
output probability determines the location on which the stone should be placed.

They have used supervised learning for the policy network using 30 million board
configurations played by the professionals.

The network maximizes the log-likelihood of policy:

maximize
w

log πw (a|s),

w ← w + α
∂ log πw (a|s)

∂w
.

Deep Reinforcement Learning 50 / 58

AlphaGo: Game of Go by Reinforcement Learning

After the supervised learning, some policy function, implemented as the policy network, is
found. This policy function can become better by policy gradient. In the policy gradient
for the policy network, the network plays the game of Go in episodes against its previous
version fine-tuned in the previous episode. In every episode, the policy network is trained
and fine-tuned further.

For every episode, the total reward is defined as:

Gn =

{
1 if it wins
−1 if it loses.

(35)

Eq. (34) is used for fine-tuning the policy network in episodes by policy gradient:

wn+1 ← wn + αnγ
nGn∇w log πw (an|sn).

Deep Reinforcement Learning 51 / 58

AlphaGo: Game of Go by Reinforcement Learning

AlphaGo has also a value network to predict the value v(s), i.e., to predict who will win
the game eventually.

The input of the value network is the state s which is the configuration of the board.

The output of the value network is the expected discounted summation of rewards, i.e.,
v(s).

Deep Reinforcement Learning 52 / 58

AlphaGo: Game of Go by Reinforcement Learning

The value network is trained by gradient value learning. The data for training are the
(s,G) pairs where G is defined as in Eq. (35):

G =

{
1 if it wins
−1 if it loses.

The cost function to minimize by the network is:

minimize
w

1

2
(vw (s)− G)2,

and the optimization in backpropagation is:

w ← w − α(vw (s)− G)
∂vw (s)

∂w
.

Deep Reinforcement Learning 53 / 58

AlphaGo: Game of Go by Reinforcement Learning

AlphaGo combines the policy network and the value network into a Monte Carlo Tree
Search (MCTS) algorithm [11]. In this MCTS, every node of the tree is a state s and
every edge is an action.

Every possible episode of game is one of the trajectories in the tree with its own reward.
As this tree becomes very large, it will cause memory error and also searching in the tree
becomes hard and time consuming. Therefore, MCTS grows the tree only in the
trajectories of most promising states.

Note that many artificial intelligence algorithms for solving board games, such as AlphaGo
for the game of Go [10] and AlphaZero for chess and shogi [12, 13, 14], use MCTS.

Deep Reinforcement Learning 54 / 58

Acknowledgment

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at the
University of Waterloo, Department of Statistics.

Also watch teachings of Prof. Pascal Poupart at the University of Waterloo, Department
of Statistics (available on YouTube).

A good textbook in reinforcement learning by Richard Sutton: [1]

Deep Reinforcement Learning 55 / 58

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] K. Zhang, Z. Yang, and T. Başar, “Multi-agent reinforcement learning: A selective
overview of theories and algorithms,” Handbook of reinforcement learning and control,
pp. 321–384, 2021.

[3] B. Ghojogh, F. Karray, and M. Crowley, “Hidden markov model: Tutorial,” 2019.

[4] T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker, et al., “Model-based reinforcement
learning: A survey,” Foundations and Trends® in Machine Learning, vol. 16, no. 1,
pp. 1–118, 2023.

[5] S. Çalışır and M. K. Pehlivanoğlu, “Model-free reinforcement learning algorithms: A
survey,” in 2019 27th signal processing and communications applications conference (SIU),
pp. 1–4, IEEE, 2019.

[6] B. Ghojogh, H. Nekoei, A. Ghojogh, F. Karray, and M. Crowley, “Sampling algorithms,
from survey sampling to Monte Carlo methods: Tutorial and literature review,” arXiv
preprint arXiv:2011.00901, 2020.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing Atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

Deep Reinforcement Learning 56 / 58

References (cont.)

[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[9] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Machine learning, vol. 8, pp. 229–256, 1992.

[10] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the
game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587,
pp. 484–489, 2016.

[11] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of Monte Carlo tree search
methods,” IEEE Transactions on Computational Intelligence and AI in games, vol. 4, no. 1,
pp. 1–43, 2012.

[12] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and shogi by self-play with a
general reinforcement learning algorithm,” arXiv preprint arXiv:1712.01815, 2017.

[13] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre,
D. Kumaran, T. Graepel, et al., “A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

Deep Reinforcement Learning 57 / 58

References (cont.)

[14] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, et al., “Mastering Atari, Go, chess and shogi by
planning with a learned model,” Nature, vol. 588, no. 7839, pp. 604–609, 2020.

Deep Reinforcement Learning 58 / 58

