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Introduction

Suppose we have a generative model which takes a random noise as input and generates
a data point.

We want the generated data point to be of good quality; hence, we should somehow
judge its quality.

One way to judge it is to observe the generated sample and assess its quality visually. In
this case, the judge is a human. However, we cannot take derivative of human’s
judgment for optimization.

Generative Adversarial Network (GAN), proposed in (2014) [1], has the same idea but it
can take derivative of the judgment. For that, it uses a classifier as the judge rather than
a human. Hence, we have a generator generating a sample and a binary classifier (or
discriminator) to classify the generated sample as a real or generated sample.

This classifier can be a pre-trained network which is already trained by some real and
generated (fake) data points. However, GAN puts a step ahead and lets the classifier be
trained simultaneously with training the generator. This is the core idea of adversarial
learning where the classifier, also called the discriminator, and the generator compete with
one another; hence, they make each other stronger gradually by this competition [2].
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Introduction

It is noteworthy that the term “adversarial” is used in two main streams of research in
machine learning and they should not be confused. These two research areas are:

▶ Adversarial attack, also called learning with adversarial examples or adversarial
machine learning. This line of research inspects some examples which can be
changed slightly but wisely to fool a trained learning model. For example,
perturbation of some specific pixels in the input image may change the decision of
learning model. The reason for this can be analyzed theoretically. Some example
works in this area are [3, 4, 5, 6, 7].

▶ Adversarial learning for generation. This line of research is categorized as
generative models [8] and/or methods based on that. GAN is in this line of
research. This paper focuses on this research area.
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Adversarial Learning: The Adversarial Game
The original GAN, also called the vanilla GAN, was proposed in (2014) [1].

Consider a d-dimensional dataset with n data points, i.e., {x i ∈ Rd}ni=1. In GAN, we have
a generator G which takes a p-dimensional random noise z ∈ Rp as input and outputs a
d-dimensional generated point x ∈ Rd . Hence, it is the mapping G : z → x where:

G(z) = x . (1)

Let the distribution of random noise be denoted by z ∼ pz (z). We want the generated x̂
to be very similar to some original (or real) data point x in the dataset. We need a
module to judge the quality of the generated point to see how similar it is to the real
point. This module can be a human but we cannot take derivative of human’s judgment
for optimization! A good candidate for the judge is a classifier, also called the
discriminator. The discriminator (also called the critic), denoted by D : x → [0, 1], is a
binary classifier which classifies the generated point as a real or generated point:

D(x) :=
{

1 if x is real,
0 if x is generated (fake).

(2)

The perfect discriminator outputs one for real points and zero for generated points.

The discriminator’s output is in the range [0, 1] where the output for real data is closer to
one and the output for fake data is closer to zero.

If the generated point is very good and closely similar to a real data point, the classifier
may make a mistake and output a value close to one for it. Therefore, if the classifier
makes a mistake for the generated point, the generator has done a good job in generating
a data point.
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Adversarial Learning: The Adversarial Game

The discriminator can be a pre-trained classifier, but we can make the problem more
sophisticated, as explained in the following.

Let us train the discriminator simultaneously while we are training the generator. This
makes the discriminator D and the generator G stronger gradually while they compete
each other.

On the one hand, the generator tries to generate realistic points to fool the
discriminator and make it a hard time to distinguish the generated point from a real point.

On the other hand, the discriminator tries to discriminate the fake (i.e., generated)
point from a real point.

When one of them gets stronger in training, the other one tries to become stronger to be
able to compete. Therefore, there is an adversarial game between the generator and the
discriminator. This game is zero-sum because whatever one of them loses, the other wins.
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Optimization and Loss Function
We denote the probability distributions of dataset and noise by pdata(x) and pz (z),
respectively.

As the figure shows, the discriminator is trained by real points from dataset as well as
generated points from the generator.

The discriminator and generator are trained simultaneously.

The optimization loss function for both the discriminator and generator is:

min
G

max
D

V (D,G) := Ex∼pdata(x)

[
log

(
D(x)

)]
+ Ez∼pz (z)

[
log

(
1− D

(
G(z)

))]
, (3)

where E[.] denotes the expectation operator and the loss function V (D,G) is also called
the value function of the game.

In practice, we can use the Monte Carlo approximation [9] of expectation where the
expectations are replaced with averages over the mini-batch.
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Optimization and Loss Function
We had:

min
G

max
D

V (D,G) := Ex∼pdata(x)

[
log

(
D(x)

)]
+ Ez∼pz (z)

[
log

(
1− D

(
G(z)

))]
.

The first term in Eq. (3) is expectation over the real data. This term is only used for the
discriminator while it is a constant for the generator. According to Eq. (2), D(x) outputs
one (the larger label) for the real data; therefore, the discriminator maximizes this term
because it assigns the larger label to the real data.

The second term in Eq. (3) is expectation over noise. It inputs the noise z to the
generator to have G(z). The output of generator, which is the generated point, is fed as
input to the discriminator to have D

(
G(z)

)
. The discriminator wants to minimize

D
(
G(z)

)
because the smaller label is assigned to the generated data, according to Eq.

(2). In other words, the discriminator wants to maximize 1− D
(
G(z)

)
.

As logarithm is a monotonic function, we can say that the discriminator wants to
maximize Ez∼pz (z)[log(1−D(G(z)))] which is the second term in Eq. (3). As opposed to
the discriminator, the generator minimizes Ez∼pz (z)[log(1− D(G(z)))] which is the
second term in Eq. (3). This is because the generator wants to fool the discriminator to
label the generated data as real data.
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Optimization and Loss Function
We had:

min
G

max
D

V (D,G) := Ex∼pdata(x)

[
log

(
D(x)

)]
+ Ez∼pz (z)

[
log

(
1− D

(
G(z)

))]
.

The Eq. (3) is a minimax optimization problem [10] and can be solved using alternating
optimization [11] where we optimize over D and over G iteratively until convergence (i.e.,
Nash equilibrium).

The original GAN [1] uses a step of stochastic gradient descent [11] for updates of each
variable in the alternating optimization. If we denote the loss function in Eq. (3) by
V (D,G), the alternating optimization is done as:

D(k+1) := D(k) + η(k)
∂

∂D

(
V (D,G (k))

)
, (4)

G (k+1) := G (k) − η(k)
∂

∂G

(
V (D(k+1),G)

)
, (5)

where k is the index of iteration and η(k) is the learning rate at iteration k.

Throughout this slide deck, derivatives w.r.t. D and G mean the derivatives w.r.t. the
parameters (weights) of D and G networks, respectively.

Eqs. (4) and (5) are one step of gradient ascent and gradient descent, respectively. Note
that the gradients here are the average of gradients in the mini-batch. Every mini-batch
includes both real and generated data.

The paper [1] suggests that Eq. (4) can be performed for several times before
performing Eq. (5); however, the experiments of that paper perform Eq. (4) for only one
time before performing Eq. (5).
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Optimization and Loss Function

Also note that another way to solve the optimization problem in GAN is simultaneous
optimization [12] in which Eqs. (4) and (5) are performed at the same time and not one
after the other.

Minimax versus maximin in GAN [13, Section 5]: We saw in Eq. (3) that the
optimization of GAN is a minimax problem:

min
G

max
D

V (D,G). (6)

By changing the order of optimization, one can see GAN as a maximin problem [13]:

max
D

min
G

V (D,G). (7)

In fact, under some conditions, Eqs. (6) and (7) are equivalent [10].
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Network Structure of GAN

In practice, the discriminator and generator are two (deep) neural networks. The
structure of GAN is depicted in this figure.

The first layer of discriminator network is d-dimensional and its last layer is one
dimensional with scalar output. In the original GAN, maxout activation function [14] is
used for all layers except the last layer which has the sigmoid activation function to
output a probability to model Eq. (2). The closer the output of D to one, the more
probable its input is to be real.

The generator network has a p-dimensional input layer for noise and a d-dimensional
output layer for generating data. In the generator, a combination of ReLU [15] and
sigmoid activation functions are used.

The space of noise as the input to the generator is called the latent space or the latent
factor.

Each of the Eqs. (4) and (5) are performed using backpropagation in the neural networks.
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Optimal Solution of
GAN
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Optimal Solution of GAN
Theorem: [1, Proposition 1]: For a fixed generator G , the optimal discriminator is:

D∗(x) =
pdata(x)

pdata(x) + pg (x)
, (8)

where pdata(x) is the probability distribution of the real dataset evaluated at point x and
pg (x) is the probability distribution of output of generator evaluated at point x .
Proof: According to the definition of expectation, the loss function in Eq. (3) can be
stated as:

V (D,G) =

∫
x
pdata(x) log(D(x))dx +

∫
z
pz (z) log(1− D(G(z)))dz .

According to Eq. (1), we have:

G(z) = x =⇒ z = G−1(x) =⇒ dz = (G−1)′(x)dx ,

where (G−1)′(x) is the derivative of (G−1)(x) with respect to (w.r.t.) x . Hence:

V (D,G) =

∫
x
pdata(x) log(D(x))dx +

∫
z
pz (G

−1(x)) log(1− D(x))(G−1)′(x)dx .
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Optimal Solution of GAN
We found:

V (D,G) =

∫
x
pdata(x) log(D(x))dx +

∫
z
pz (G

−1(x)) log(1− D(x))(G−1)′(x)dx .

The relation of distributions of input and output of generator is:

pg (x) = pz (z)× G−1(x) = pz (G
−1(x))G−1(x), (9)

where G−1(x) is the Jacobian of distribution at point x . Hence:

V (D,G) =

∫
x
pdata(x) log(D(x))dx +

∫
z
pg (x) log(1− D(x))dx

=

∫
x

(
pdata(x) log(D(x)) + pg (x) log(1− D(x))

)
dx . (10)

For optimization in Eq. (3), taking derivative w.r.t. D(x) gives:

∂V (D,G)

∂D(x)
(a)
=

∂

∂D(x)

(
pdata(x) log(D(x)) + pg (x) log(1− D(x))

)
=

pdata(x)
D(x)

−
pg (x)

1− D(x)
=

pdata(x)(1− D(x))− pg (x)D(x)
D(x)(1− D(x))

set
= 0

=⇒ pdata(x)− pdata(x)D(x)− pg (x)D(x) = 0 =⇒ D(x) =
pdata(x)

pdata(x) + pg (x)
,

where (a) is because taking derivative w.r.t. D(x) considers a specific x and hence it
removes the integral (summation). Q.E.D.
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Optimal Solution of GAN
Theorem: [1, Theorem 1] The optimal solution of GAN is when the distribution of
generated data becomes equal to the distribution of data:

pg∗ (x) = pdata(x). (11)

Proof: Putting the optimum D∗(x), i.e. Eq. (8), in Eq. (10) gives:

V (D∗,G) =

∫
x

(
pdata(x) log(D∗(x)) + pg (x) log(1− D∗(x))

)
dx

(8)
=

∫
x

[
pdata(x) log

( pdata(x)
pdata(x) + pg (x)

)
+ pg (x) log

( pg (x)
pdata(x) + pg (x)

)]
dx

=

∫
x

[
pdata(x) log

( pdata(x)

2× pdata(x)+pg (x)
2

)
+ pg (x) log

( pg (x)

2× pdata(x)+pg (x)
2

)]
dx

=

∫
x

[
pdata(x) log

( pdata(x)
pdata(x)+pg (x)

2

)
+ pg (x) log

( pg (x)
pdata(x)+pg (x)

2

)]
dx + log(

1

2
) + log(

1

2
)

=

∫
x

[
pdata(x) log

( pdata(x)
pdata(x)+pg (x)

2

)
+ pg (x) log

( pg (x)
pdata(x)+pg (x)

2

)]
dx − log(4)

(a)
= KL

(
pdata(x)

∥∥∥pdata(x) + pg (x)
2

)
+ KL

(
pg (x)

∥∥∥pdata(x) + pg (x)
2

)
− log(4), (12)

where (a) is because of the definition of KL divergence.
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Optimal Solution of GAN

We found:

V (D∗,G) = KL
(
pdata(x)

∥∥∥pdata(x) + pg (x)
2

)
+ KL

(
pg (x)

∥∥∥pdata(x) + pg (x)
2

)
− log(4).

The Jensen-Shannon Divergence (JSD) is defined as [16]:

JSD(P∥Q) :=
1

2
KL(P∥

1

2
(P + Q)) +

1

2
KL(Q∥

1

2
(P + Q)), (13)

where P and Q denote the probability densities. In contrast to KL divergence, the JSD is
symmetric.

The obtained V (D∗,G) can be restated as:

V (D∗,G) = 2 JSD
(
pdata(x) ∥ pg (x)

)
− log(4). (14)

According to Eq. (3), the generator minimizes V (D∗,G). As the JSD is non-negative, the
above loss function is minimized if we have:

JSD
(
pdata(x) ∥ pg∗ (x)

)
= 0 =⇒ pdata(x) = pg∗ (x).

Q.E.D.
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Optimal Solution of GAN

Corollary: [1, Theorem 1]: From Eqs. (11) and (14):

pg∗ (x) = pdata(x),

V (D∗,G) = 2 JSD
(
pdata(x) ∥ pg (x)

)
− log(4),

we conclude that the optimal loss function in GAN is:

V (D∗,G∗) = − log(4). (15)
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Equilibrium Analysis of
GAN
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Convergence and Equilibrium Analysis of GAN

Theorem: [1, Proposition 2] If the discriminator and generator have enough capacity and,
at every iteration of the alternating optimization, the followings occur:

▶ the discriminator is allowed to reach its optimum value as in Eq. (8),

D∗(x) = pdata(x)
pdata(x)+pg (x)

, and

▶ pg (x) is updated to minimize V (D∗,G), as stated in Eq. (14),
V (D∗,G) = 2 JSD

(
pdata(x) ∥ pg (x)

)
− log(4),

then, pg (x) converges to pdata(x), as stated in Eq. (11), pg∗ (x) = pdata(x).
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Convergence and Equilibrium Analysis of GAN

Proof: The KL divergences in Eq. (12):

V (D∗,G) = KL
(
pdata(x)

∥∥∥pdata(x) + pg (x)
2

)
+ KL

(
pg (x)

∥∥∥pdata(x) + pg (x)
2

)
− log(4).

are convex functions w.r.t. pg (x). Hence, with sufficiently small updates of pg (x), it
converges to pdata(x). Note that Eq. (12), which we used here, holds if Eq. (8) holds,
i.e., the discriminator is allowed to reach its optimum value. Q.E.D.

The GAN loss, i.e. Eq. (3), can be restated as [17]:

min
G

max
D

V (D,G) := Ex∼pdata(x)

[
f
(
D(x)

)]
+ Ez∼pz (z)

[
f
(
−D

(
G(z)

))]
, (16)

where f is the negative logistic function, i.e., f (x) := − log(1 + exp(−x)). In fact, the
function f (.) can be any concave function. This formulation is slightly different from the
original GAN in the sense that, here, the discriminator D outputs a real-valued scalar
(without any activation function) while the discriminator of Eq. (3) outputs values in the
range (0, 1) after a sigmoid activation function.

If D outputs 0.5 and 0, it means that it is completely confused in Eqs. (3) and (16),
respectively. The Eq. (16) is a concave-concave loss function in most of the domain of
discriminator [17, Proposition 3.1].
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Convergence and Equilibrium Analysis of GAN

Theorem: [17, Theorem 3.1]: After satisfying several reasonable assumptions (see [17] for
details), a GAN with loss function of Eq. (16) is locally exponentially stable.

Lemma: Nash equilibrium in GAN [18]: Nash equilibrium is the state of game where no
player can improve its gain by choosing a different strategy. At the Nash equilibrium of
GAN, we have:

V (D,G∗) ≤ V (D∗,G∗) ≤ V (D∗,G), (17)

which is obvious because we are minimizing and maximizing V (G ,D) by the generator
and discriminator, respectively, in Eq. (3):

min
G

max
D

V (D,G).

Empirical experiments have shown that GAN may not reach its Nash equilibrium in
practice [18]. Regularization can help convergence of GAN to the Nash equilibrium [19].
It is shown in [19] that an effective regularization for GAN is noise injection [20] in which
independent Gaussian noise is added to the training data points.

Generative Adversarial Network 23 / 48



Conditional GAN
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Conditional GAN
As was explained before, in the original GAN, we randomly draw noise z from a prior
distribution pz (z) and feed it to the generator. The generator outputs a point x from the
noise z . Assume that the dataset with which GAN is trained has c number of classes.
The original GAN generates points from any class and we do not have control to
generate a point from a specific class.

Although, note that after GAN is trained, the latent space for z is meaningful in the sense
that every part of the latent space results in generation of some specific points from some
class. However, the user cannot choose specifically what class to generate points from.

Conditional GAN (2014) [21], also called the conditional adversarial network, gives the
user the opportunity to choose the class of generation of points. For the dataset
{x i ∈ Rd}ni=1, let the one-hot encoded class labels be {y i ∈ Rc}ni=1. In conditional GAN,
we use the following loss function instead of Eq. (3):

min
G

max
D

VC (D,G) := Ex∼pdata(x)

[
log

(
D(x |y)

)]
+ Ez∼pz (z)

[
log

(
1− D

(
G(z |y)

))]
,

(18)
where the discriminator and generator are both conditioned on the labels.

In practice, for implementing the loss function (18), we concatenate the one-hot encoded
label y to the point x for the input to discriminator. We also concatenate the one-hot
encoded label y to the noise z for the input to generator. For these, the input layers of
discriminator and generator are enlarged to accept the concatenated inputs.

In the test phase, the user chooses the desired class label and the generator generates a
new point from that class.

Generative Adversarial Network 25 / 48



Deep Convolutional
GAN (DCGAN)
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Deep Convolutional GAN (DCGAN)
Deep Convolutional GAN (DCGAN), proposed in (2016) [22], made GAN deeper and
generated higher resolution images than GAN.

It also showed that it is very hard to train a GAN.

In DCGAN, we use an all-convolutional network [23] which replaces the pooling
functions with strided convolutions. In this way, the network learns its own spatial
downsampling. This network is used for both generator and discriminator.

In DCGAN, we also have only convolutional layers in the input layer of generator and
output layer of discriminator, without any fully-connected layer. This elimination of fully
connected layers is inspired by [24].

We also apply batch normalization [25] to all layers except the last layer of generative
and the first layer of discriminator. This is because batch normalization makes the mean
of input to each neuron zero and its variance one; however, we should learn the mean
and variance of data in the first layer of discriminator and the mean and variance of data
should be reproduced by the last layer of generator.

Batch normalization reduces the problem of mode collapse, which will be introduced
later, with the price of causing some fluctuations and instability [22].

Virtual batch normalization [26, Section 3.5]: Batch normalization has a problem; it
makes the effect of every input x on network dependent on other inputs in the
mini-batch. To not have this problem, Virtual Batch Normalization (VBN) fixes the
mini-batches initially once before start of training; these mini-batches are called the
reference batches. Every reference batch is normalized by only its own statistics (i.e.,
mean and covariance). VBN has been found to be effective in training of generator [26].
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Deep Convolutional GAN (DCGAN)

In DCGAN, the last layer of generator has the hyperbolic tangent activation function
and its other layers have the ReLU activation function [15].

As in GAN, the one-to-last layer of discriminator is flattened and connected to one neuron
with the sigmoid activation function.

In contrast to GAN, which uses the maxout activation function [14] for discriminator
layers, DCGAN uses the leaky rectified action function for discriminator.
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Vector Arithmetic in Latent Space
DCGAN showed that we can generate images from a specific domain if we train GAN
on that domain. For example, bedroom images were generated by DCGAN after being
trained on a dataset of bedroom images.
DCGAN also showed that the learned latent space is meaningful and we can do vector
arithmetic in the latent space. Vector arithmetic in the latent space was previously used
for showing the ability of Word2Vec [27]. DCGAN made it possible to do vector
arithmetic in the latent space for images.
An example of vector arithmetic by DCGAN is shown in this figure. In the latent space,
the latent variables corresponding to man with glasses, man without glasses, and woman
without glasses are used. Using one latent point for each of these does not work very well.
An average of three latent vectors for each has worked properly in practice. The vector
arithmetic works because “man with glasses” minus “man without glasses” plus
“woman without glasses” results in “woman with glasses”.
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Mode Collapse
Problem in GAN
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Mode Collapse Problem in GAN

We expect from a GAN to learn a meaningful latent space of z so that every specific
value of z maps to a specific generated data point x . Also, nearby z values in the
latent space should be mapped to similar but a little different generations.

The mode collapse problem [28], also known as the Helvetica scenario [13], is a common
problem in GAN models. It refers to when the generator cannot learn a perfectly
meaningful latent space as was explained. Rather, it learns to map several different z
values to the same generated data point.

Mode collapse usually happens in GAN when the distribution of training data, pdata(x),
has multiple modes.

An example of mode collapse is illustrated in this figure which shows training steps of a
GAN model when the training data is a mixture of Gaussians [28]. In different training
steps, GAN learns to map all z values to one of the modes of mixture. When the
discriminator learns to reject generation of some mode, the generator learns to map all
z values to another mode. However, it never learns to generate all modes of the
mixture. We expect GAN to map some part, and not all parts, of the latent space to one
of the modes so that all modes are covered by the whole latent space.
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Mode Collapse Problem in GAN

Another statement of the mode collapse is as follows [29, Fig. 1]. Assume pdata(x) is
multi-modal while the latent space pz (z) has only one mode.

Consider two points x1 and x2 from two modes of data whose corresponding latent noises
are z1 and z2, respectively. According to the mean value theorem, there is a latent noise
with the absolute gradient value ∥x2 − x1∥/∥z2 − z1∥ where ∥.∥ is a norm. As this
gradient is Lipschitz continuous, when the two modes are very far resulting in a large
∥x2 − x1∥, we face a problem. In this case, the latent noises between z1 and z2 generate
data points between x1 and x2 which are not in the modes of data and thus are not valid.

There exist various methods which resolve the mode collapse problem in GAN and
adversarial learning. Some of them make the latent space a mixture distribution to
imitate generation of the multi-modal training data. Some of them, however, have other
approaches.

These methods are Minibatch GAN (2016) [26, Section 3.2], Unrolled GAN (2017) [28],
Bourgain GAN (2018) [29], Mixture GAN (MGAN) (2018) [30], Dual Discriminator GAN
(D2GAN) (2017) [31], and Wasserstein GAN (WGAN) (2017) [32].

For more information on GAN and its variants, see our tutorial [33].
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GAN
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Some Applications of GAN

CycleGAN (credit: (2017) [34]) and DeepFaceDrawing (credit: (2020) [35])
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Some Applications of GAN

credit: [36]
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Some Applications of GAN

Images are from [37], [38], and [39], respectively.
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Adversarial
Autoencoder
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Adversarial Autoencoder

Previously, variational Bayes was used in an autoencoder setting to have variational
autoencoder [40, 41].

Likewise, adversarial learning can be used in an autoencoder setting [42].

Several adversarial-based autoencoders exist:
▶ Adversarial Autoencoder (AAE) (2015) [43]
▶ PixelGAN autoencoder (2017) [44]
▶ Implicit Autoencoder (IAE) (2018) [45]
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Adversarial Autoencoder
Adversarial Autoencoder (AAE) was proposed in (2015) [43].

The structure of AAE is depicted in this figure. Each of the blocks B1, B2, and B3 in this
figure has several network layers with nonlinear activation functions.

AAE has an encoder (i.e., block B1) and a decoder (i.e., block B2). The input of encoder
is a real data point x ∈ Rd and the output of decoder is the reconstructed data point
x̂ ∈ Rd . One of the low-dimensional middle layers is the latent (or code) layer, denoted by
z ∈ Rp , where p ≪ d .

The encoder and decoder model conditional distributions p(z |x) and p(x |z), respectively.
Let the distribution of the latent variable in the autoencoder be denoted by q(z). This is
the posterior distribution of latent variable.

The blocks B1 and B3 are the generator G and discriminator D of adversarial network,
respectively. We also have a prior distribution, denoted by p(z), on the latent variable
which is chosen by the user. This prior distribution can be a p-dimensional normal
distribution N (0, I ), for example.
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Adversarial Autoencoder

The encoder of the autoencoder (i.e., block B1) is the generator G which generates the
latent variable from the posterior distribution:

G(x) = z ∼ q(z). (19)

The discriminator D (i.e., block B3) has a single output neuron with sigmoid activation
function. It classifies the latent variable z to be a real latent variable from the prior
distribution p(z) or a generated latent variable by the encoder of autoencoder:

D(z) :=
{

1 if z is real, i.e., z ∼ p(z)
0 if z is generated, i.e., z ∼ q(z). (20)

As was explained, the block B1 is shared between the autoencoder and the adversarial
network.

This adversarial learning makes both autoencoder and adversarial network stronger
gradually because the autoencoder tries to generate the latent variable which is very
similar to the real latent variable from the prior distribution. In this way, it tries to fool
the discriminator. The discriminator, on the other hand, tries to become stronger not to
be fooled by the encoder of autoencoder.
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Adversarial Autoencoder

In AAE, we have alternating optimization [11] where reconstruction and regularization
phases are repeated iteratively.

In the reconstruction phase, the mean squared error is minimized between the data x and
the reconstructed data x̂ . In the regularization phase, the discriminator and generator are
updated using the GAN approach.

For each of these updates, we use stochastic gradient descent [11] with backpropagation.
Overall, the two phases are performed as:

B′
1,B

(k+1)
2 := arg min

B1,B2

∥x̂ − x∥22, (21) B
(k+1)
3 := B

(k)
3 − η(k) ∂

∂B3

(
V (B3,B′

1)
)
,

B
(k+1)
1 := B′

1 − η(k) ∂
∂B1

(
V (B

(k+1)
3 ,B1)

)
,

(22)

where B1 = G and B3 = D. Eq. (21) is the reconstruction phase and Eq. (22) is the
regularization phase.

For supervised and semi-supervised AAE, refer to our tutorial paper [33].
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Acknowledgment

Some slides are based on our tutorial paper: “Generative adversarial networks and
adversarial autoencoders: Tutorial and survey” [33]

For more information on GAN and its variants, see our tutorial [33]. It covers various
variants of GAN:

▶ vanilla GAN, conditional GAN, DCGAN, the mode collapse problem, minibatch
GAN, unrolled GAN, BourGAN, mixture GAN, D2GAN, Wasserstein GAN, f-GAN,
adversarial variational Bayes, Bayesian GAN, feature matching in GAN, InfoGAN,
GRAN, LSGAN, energy-based GAN, CatGAN, MMD GAN, LapGAN, progressive
GAN, triple GAN, LAG, GMAN, AdaGAN, CoGAN, inverse GAN, BiGAN, ALI,
SAGAN, Few-shot GAN, SinGAN, interpolation and evaluation of GAN,
image-to-image translation (including PatchGAN, CycleGAN, DeepFaceDrawing,
simulated GAN, interactive GAN), text-to-image translation (including StackGAN),
mixing image characteristics (including FineGAN and MixNMatch), adversarial
autoencoder, PixelGAN, implicit autoencoder.

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics.
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