
Deep Metric Learning

Deep Learning (ENGG*6600*07)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Fall 2023

Deep Metric Learning 1 / 37

Introduction

Deep Metric Learning 2 / 37

Introduction
Both spectral and probabilistic metric learning methods use the generalized Mahalanobis
distance, i.e. Eq. (1):

∥x i − x j∥W :=
√

(x i − x j)⊤W (x i − x j).

∴ ∥x i − x j∥2W := (x i − x j)
⊤W (x i − x j),

(1)

and learn the weight matrix in the metric.
Deep metric learning, however, has a different approach. The methods in deep metric
learning usually do not use a generalized Mahalanobis distance but they learn an
embedding space using a neural network.
The network learns a p-dimensional embedding space for discriminating classes or the
dissimilar points and making the similar points close to each other. The network embeds
data in the embedding space (or subspace) of metric.
Then, any distance metric d(., .) : Rp × Rp → R can be used in this embedding space. In
the loss functions of network, we can use the distance function d(., .) in the embedding
space. For example, an option for the distance function is the squared ℓ2 norm or squared
Euclidean distance:

d
(
f(x1

i), f(x
2
i)
)
:= ∥f(x1

i)− f(x2
i)∥

2
2, (2)

where f(x i) ∈ Rp denotes the output of network for the input x i as its p-dimensional
embedding.
We train the network using mini-batch methods such as the mini-batch stochastic
gradient descent and denote the mini-batch size by b. The weights of network are
denoted by the learnable parameter θ.

Deep Metric Learning 3 / 37

Reconstruction
Autoencoders

Deep Metric Learning 4 / 37

Types of Autoencoders

An autoencoder is a model consisting of an encoder E(.) and a decoder D(.).

There are several types of autoencoders. All types of autoencoders learn a code layer in
the middle of encoder and decoder.

Inferential autoencoders learn a stochastic latent space in the code layer between the
encoder and decoder.

Variational autoencoder [1] and adversarial autoencoder [2] are two important types of
inferential autoencoders.

Another type of autoencoder is the reconstruction autoencoder consisting of an encoder,
transforming data to a code, and a decoder, transforming the code back to the data.
Hence, the decoder reconstructs the input data to the encoder.

The code is a representation for data. Each of the encoder and decoder can be multiple
layers of neural network with activation functions.

Deep Metric Learning 5 / 37

Reconstruction Loss

We denote the input data point to the encoder by x ∈ Rd where d is the dimensionality of
data.

The reconstructed data point is the output of decoder and is denoted by x̂ ∈ Rd .

The representation code, which is the output of encoder and the input of decoder, is
denoted by f(x) := E(x) ∈ Rp . We have x̂ = D(E(x)) = D(f(x)).
If the dimensionality of code is greater than the dimensionality of input data, i.e. p > d ,
the autoencoder is called an over-complete autoencoder [3]. Otherwise, if p < d , the
autoencoder is an under-complete autoencoder [3].

The loss function of reconstruction autoencoder tries to make the reconstructed data
close to the input data:

minimize
θ

b∑
i=1

(
d
(
x i , x̂ i

)
+ λΩ(θ)

)
, (3)

where λ ≥ 0 is the regularization parameter and Ω(θ) is some penalty or regularization on
the weights. Here, the distance function d(., .) is defined on Rd × Rd . Note that the
penalty term can be regularization on the code f(x i).

If the used distance metric is the squared Euclidean distance, this loss is named the
regularized Mean Squared Error (MSE) loss.

Deep Metric Learning 6 / 37

Denoising Autoencoder

A problem with over-complete autoencoder is that its training only copies each feature
of data input to one of the neurons in the code layer and then copies it back to the
corresponding feature of output layer.

This is because the number of neurons in the code layer is greater than the number of
neurons in the input and output layers.

In other words, the networks just memorizes or gets overfit.

This copying happens by making some of the weights equal to one (or a scale of one
depending on the activation functions) and the rest of weights equal to zero.

To avoid this problem in over-complete autoencoders, one can add some noise to the
input data and try to reconstruct the data without noise.

This forces the over-complete autoencoder to not just copy data to the code layer. This
autoencoder can be used for denoising as it reconstructs the data without noise for a
noisy input. This network is called the Denoising Autoencoder (DAE) [3].

Deep Metric Learning 7 / 37

Metric Learning by Reconstruction Autoencoder
The under-complete reconstruction autoencoder can be used for metric learning and
dimensionality reduction, especially when p ≪ d .

The loss function for learning a low-dimensional representation code and reconstructing
data by the autoencoder is Eq. (3). The code layer between the encoder and decoder is
the embedding space of metric.

Note that if the activation functions of all layers are linear, the under-complete
autoencoder is reduced to Principal Component Analysis [4]. Let U l denote the weight
matrix of the l-th layer of network, ℓe be the number of layers of encoder, and ℓd be the
number of layers of decoder. With linear activation function, the encoder and decoder are:

encoder: Rp ∋ f(x i) = U⊤
ℓe

U⊤
ℓe−1 . . .U

⊤
1︸ ︷︷ ︸

U⊤
e

x i ,

decoder: Rd ∋ x̂ i = U1 . . .Uℓd−1Uℓd︸ ︷︷ ︸
Ud

f(x i),

where the ℓ concatenated linear projections can be replaced by a linear projection with
projection matrices Ue and Ud in the encoder and decoder, respectively.

For learning complicated data patterns, we can use nonlinear activation functions
between layers of the encoder and decoder to have nonlinear metric learning and
dimensionality reduction.

Deep Metric Learning 8 / 37

Metric Learning by Reconstruction Autoencoder

It is noteworthy that nonlinear neural network can be seen as an ensemble or
concatenation of dimensionality reduction (or feature extraction) and kernel methods.
The justification of this claim is as follows.

Let the dimensionality for a layer of network be U ∈ Rd1×d2 so it connects d1 neurons to
d2 neurons. Two cases can happen:

▶ If d1 ≥ d2, this layer acts as dimensionality reduction or feature extraction because
it has reduced the dimensionality of its input data. If this layer has a nonlinear
activation function, the dimensionality reduction is nonlinear; otherwise, it is linear.

▶ If d1 < d2, this layer acts as a kernel method which maps its input data to the
high-dimensional feature space in some Reproducing Kernel Hilbert Space (RKHS).
This kernelization can help nonlinear separation of some classes which are not
separable linearly [5]. An example use of kernelization in machine learning is kernel
support vector machine [6].

Therefore, a neural network is a complicated feature extraction method as a
concatenation of dimensionality reduction and kernel methods, where each layer of
network learns its own features from data.

Deep Metric Learning 9 / 37

Supervised Metric
Learning by Supervised
Loss Functions

Deep Metric Learning 10 / 37

Supervised Metric Learning by Supervised Loss Functions
Various loss functions exist for supervised metric learning by neural networks.

Supervised loss functions can teach the network to separate classes in the embedding
space [7].

For this, we use a network whose last layer is for classification of data points. The
features of the one-to-last layer can be used for feature embedding. The last layer after
the embedding features is named the classification layer.

Let the i-th point in the mini-batch be denoted by x i ∈ Rd and its label be denoted by
yi ∈ R. Suppose the network has one output neuron and its output for the input x i is
denoted by fo(x i) ∈ R. This output is the estimated class label by the network. We
denote output of the one-to-last layer by f(x i) ∈ Rp where p is the number of neurons in
that layer which is equivalent to the dimensionality of the embedding space.

The last layer of network, connecting the p neurons to the output neuron is a
fully-connected layer. The network until the one-to-last layer can be any feed-forward or
convolutional network depending on the type of data. If the network is convolutional, it
should be flattened at the one-to-last layer.

The network learns to classify the classes, by the supervised loss functions, so the features
of the one-to-last layer will be discriminating features and suitable for embedding.

Deep Metric Learning 11 / 37

Mean Squared Error and Mean Absolute Value Losses

One of the supervised losses is the Mean Squared Error (MSE) which makes the
estimated labels close to the true labels using squared ℓ2 norm:

minimize
θ

b∑
i=1

(fo(x i)− yi)
2. (4)

One problem with this loss function is exaggerating outliers because of being squared but
its advantage is its differentiability.

Another loss function is the Mean Absolute Error (MAE) which makes the estimated
labels close to the true labels using ℓ1 norm or the absolute value:

minimize
θ

b∑
i=1

|fo(x i)− yi |. (5)

The distance used in this loss is also named the Manhattan distance.

This loss function does not have the problem of MSE and it can be used for imposing
sparsity in the embedding. It is not differentiable at the point f(x i) = yi but as the
derivatives are calculated numerically by the neural network, this is not a big issue
nowadays.

Deep Metric Learning 12 / 37

Huber and KL-Divergence Losses

Another loss function is the Huber loss which is a combination of the MSE and MAE to
have the advantages of both of them:

minimize
θ

b∑
i=1

{
0.5(fo(x i)− yi)

2 if |fo(x i)− yi | ≤ δ
δ(|fo(x i)− yi | − 0.5δ) otherwise.

(6)

KL-divergence loss function makes the distribution of the estimated labels close to the
distribution of the true labels:

minimize
θ

KL(P(f(x))∥P(y)) =
b∑

i=1

f(x i) log(
f(x i)

yi
). (7)

Deep Metric Learning 13 / 37

Hinge Loss

If there are two classes, i.e. c = 2, we can have true labels as yi ∈ {−1, 1}. In this case,
a possible loss function is the Hinge loss:

minimize
θ

b∑
i=1

[
m − yi fo(x i)

]
+
, (8)

where [·]+ := max(·, 0) and m > 0 is the margin.

If the signs of the estimated and true labels are different, the loss is positive (i.e.,[
m − yi fo(x i)

]
+
= m − yi fo(x i) > 0) which should be minimized.

If the signs are the same and |fo(x i)| ≥ m, then the loss function is zero (because
m − yi fo(x i) < 0).

If the signs are the same but |fo(x i)| < m, the loss is positive and should be minimized
because the estimation is correct but not with enough margin from the incorrect
estimation.

Deep Metric Learning 14 / 37

Cross-entropy Loss

For any number of classes, denoted by c, we can have a cross-entropy loss. For this loss,
we have c neurons, rather than one neuron, at the last layer.

In contrast to the MSE, MAE, Huber, and KL-divergence losses which use linear
activation function at the last layer, cross-entropy requires softmax or sigmoid activation
function at the last layer so the output values are between zero and one.

For this loss, we have c outputs, i.e. fo(x i) ∈ Rc (continuous values between zero and
one), and the true labels are one-hot encoded, i.e., y i ∈ {0, 1}c . This loss is defined as:

minimize
θ

−
b∑

i=1

c∑
l=1

(y i)l log
(
fo(x i)l

)
, (9)

where (y i)l and fo(x i)l denote the l-th element of y i and fo(x i), respectively.

Minimizing this loss separates classes for classification; this separation of classes also
gives us a discriminating embedding (an embedding which discriminates the classes) in
the one-to-last layer [7, 8].

Deep Metric Learning 15 / 37

Metric Learning by
Siamese Networks

Deep Metric Learning 16 / 37

Siamese and Triplet Networks
One of the important deep metric learning methods is Siamese network which is widely
used for feature extraction.
Siamese network, originally proposed in (1993) [9], is a network consisting of several
equivalent sub-networks sharing their weights.
The number of sub-networks in a Siamese network can be any number but it usually is
two or three.
A Siamese network with three sub-networks is also called a triplet network [10].
The weights of sub-networks in a Siamese network are trained in a way that the intra- and
inter-class variances are decreased and increased, respectively. In other words, the
similar points are pushed toward each other while the dissimilar points are pulled away
from one another.
Siamese networks have been used in various applications such as computer vision [11] and
natural language processing [12].

Deep Metric Learning 17 / 37

Pairs and Triplets of Data Points

Depending on the number of sub-networks in the Siamese network, we have loss functions
for training.

The loss functions of Siamese networks usually require pairs or triplets of data points.
Siamese networks do not use the data points one by one but we need to make pairs or
triplets of points out of dataset for training a Siamese network.

For making the pairs or triplets, we consider every data point as the anchor point,
denoted by xa

i . Then, we take one of the similar points to the anchor point as the
positive (or neighbor) point, denoted by xp

i . We also take one of the dissimilar points to
the anchor point as the negative (or distant) point, denoted by xn

i .

If class labels are available, we can use them to find the positive point as one of the
points in the same class as the anchor point, and to find the the negative point as one
of the points in a different class from the anchor point’s class.

Another approach is to augment the anchor point, using one of the augmentation
methods, to obtain positive points for the anchor point [13, 14]. processing [12].

Deep Metric Learning 18 / 37

Pairs and Triplets of Data Points

For Siamese networks with two sub-networks, we make pairs of anchor-positive points
{(xa

i , x
p
i)}

nt
i=1 and anchor-negative points {(xa

i , x
n
i)}

nt
i=1, where nt is the number of pairs.

For Siamese networks with three sub-networks, we make triplets of
anchor-positive-negative points {(xa

i , x
p
i , x

n
i)}

nt
i=1, where nt is the number of triplets. If

we consider every point of dataset as an anchor, the number of pairs/triplets is the same
as the number of data points, i.e., nt = n.

Various loss functions of Siamese networks use pairs or triplets of data points to push
the positive point towards the anchor point and pull the negative point away from it.
Doing this iteratively for all pairs or triplets will make the intra-class variances smaller
and the inter-class variances larger for better discrimination of classes or clusters.

Deep Metric Learning 19 / 37

Implementation of Siamese Networks

A Siamese network with two and three sub-networks is depicted below.

We denote the output of Siamese network for input x ∈ Rd by f(x) ∈ Rp where p is the
dimensionality of embedding (or the number of neurons at the last layer of the network)
which is usually much less than the dimensionality of data, i.e., p ≪ d .

Note that the sub-networks of a Siamese network can be any fully-connected or
convolutional network depending on the type of data. The used network structure for the
sub-networks is usually called the backbone network.

Deep Metric Learning 20 / 37

Implementation of Siamese Networks

The weights of sub-networks are shared in the sense that the values of their weights are
equal.

Implementation of a Siamese network can be done in two ways:

1 We can implement several sub-networks in the memory. In the training phase, we
feed every data point in the pairs or triplets to one of the sub-networks and take
the outputs of sub-networks to have f(xa

i), f(x
p
i), and f(xn

i). We use these in the
loss function and update the weights of only one of the sub-networks by
backpropagation [15]. Then, we copy the updated weights to the other
sub-networks. We repeat this for all mini-batches and epochs until convergence. In
the test phase, we feed the test point x to only one of the sub-networks and get the
output f(x) as its embedding.

2 We can implement only one sub-network in the memory. In the training phase, we
feed the data points in the pairs or triplets to the sub-network one by one and take
the outputs of sub-network to have f(xa

i), f(x
p
i), and f(xn

i). We use these in the loss
function and update the weights of the sub-network by backpropagation [15]. We
repeat this for all mini-batches and epochs until convergence. In the test phase, we
feed the test point x to the sub-network and get the output f(x) as its embedding.

The advantage of the first approach is to have all the sub-networks ready and we do not
need to feed the points of pairs or triplets one by one. Its disadvantage is using more
memory. As the number of points in the pairs or triplets is small (i.e., only two or three),
the second approach is more recommended as it is memory-efficient.

Deep Metric Learning 21 / 37

Loss Functions for
Siamese Networks

Deep Metric Learning 22 / 37

Contrastive Loss

One loss function for Siamese networks is the contrastive loss which uses the
anchor-positive and anchor-negative pairs of points.

Suppose, in each mini-batch, we have b pairs of points {(x1
i , x

2
i)}

b
i=1 some of which are

anchor-positive and some are anchor-negative pairs.

The points in an anchor-positive pair are similar, i.e. (x1
i , x

2
i) ∈ S, and the points in an

anchor-negative pair are dissimilar, i.e. (x1
i , x

2
i) ∈ D, where S and D denote the similar

and dissimilar sets.

We define:

yi :=

{
0 if (x1

i , x
2
i) ∈ S

1 if (x1
i , x

2
i) ∈ D.

∀i ∈ {1, . . . , nt}. (10)

The main contrastive loss was proposed in (2006) [16] and is:

minimize
θ

b∑
i=1

(
(1− yi)d

(
f(x1

i), f(x
2
i)
)
+ yi

[
− d

(
f(x1

i), f(x
2
i)
)
+m

]
+

)
, (11)

where m > 0 is the margin and [.]+ := max(., 0) is the standard Hinge loss.

Deep Metric Learning 23 / 37

Contrastive Loss

We had:

minimize
θ

b∑
i=1

(
(1− yi)d

(
f(x1

i), f(x
2
i)
)
+ yi

[
− d

(
f(x1

i), f(x
2
i)
)
+m

]
+

)
.

The first term of loss minimizes the embedding distances of similar points and the
second term maximizes the embedding distances of dissimilar points.

As shown in this figure, it tries to make the distances of similar points as small as possible
and the distances of dissimilar points at least greater than a margin m (because the term
inside the Hinge loss should become close to zero).

Deep Metric Learning 24 / 37

Triplet Loss
One of the losses for Siamese networks with three sub-networks is the triplet loss (2015)
[11] which uses the triplets in mini-batches, denoted by {(xa

i , x
p
i , x

n
i)}

b
i=1. It is defined as:

minimize
θ

b∑
i=1

[
d
(
f(xa

i), f(x
p
i)
)
− d

(
f(xa

i), f(x
n
i)
)
+m

]
+
, (12)

where m > 0 is the margin and [.]+ := max(., 0) is the standard Hinge loss.
As shown in this figure, because of the used Hinge loss, this loss makes the distances of
dissimilar points greater than the distances of similar points by at least a margin m; in
other words, there will be a distance of at least margin m between the positive and
negative points.
This loss desires to eventually have:

d
(
f(xa

i), f(x
p
i)
)
+m ≤ d

(
f(xa

i), f(x
n
i)
)
, (13)

for all triplets.

Deep Metric Learning 25 / 37

Neighborhood Component Analysis Loss

Neighborhood Component Analysis (NCA) (2005) [17] was originally proposed as a
spectral metric learning method.

After the success of deep learning, it was used as the loss function of Siamese networks
where we minimize the negative log-likelihood using Gaussian distribution or the
softmax form within the mini-batch.

Assume we have c classes in every mini-batch. We denote the class index of x i by c(x i)
and the data points of the j-th class in the mini-batch by Xj . The NCA loss is:

minimize
θ

−
b∑

i=1

log
(exp

(
−d

(
f(xa

i), f(x
p
i)
))∑c

j=1,j ̸=c(x i)
∑

xnj ∈Xj
exp

(
−d

(
f(xa

i)− f(xn
j)
))). (14)

The numerator minimizes the distances of similar points and the denominator maximizes
the distances of dissimilar points.

For more information on other losses for Siamese networks, see our tutorial paper
“Spectral, probabilistic, and deep metric learning: Tutorial and survey” [18].

Deep Metric Learning 26 / 37

Triplet Mining

Deep Metric Learning 27 / 37

Triplet Mining

In every mini-batch containing data points from c classes, we can select and use triplets
of data points in different ways.

For example, we can use all similar and dissimilar points for every anchor point as
positive and negative points, respectively.

Another approach is to only use some of the similar and dissimilar points within the
mini-batch. These approaches for selecting and using triplets are called triplet mining [19].

Suppose b is the mini-batch size, c(x i) is the class index of x i , Xj denotes the points of
the j-th class in the mini-batch, and X denotes the data points in the mini-batch.

Batch-all: Batch-all triplet mining (2015) [20] considers every point in the mini-batch as
an anchor point. All points in the mini-batch which are in the same class as the anchor
point are used as positive points. All points in the mini-batch which are in a different
class from the class of anchor point are used as negative points:

minimize
θ

b∑
i=1

∑
x j∈Xc(x i)

∑
xk∈X\Xc(x i)

[
d
(
f(x i), f(x j)

)
− d

(
f(x i), f(xk)

)
+m

]
+
. (15)

Batch-all mining makes use of all data points in the mini-batch to utilize all available
information.

Deep Metric Learning 28 / 37

Triplet Mining
Batch-hard: Batch-hard triplet mining (2017) [21] considers every point in the mini-batch
as an anchor point. The hardest positive, which is the farthest point from the anchor
point in the same class, is used as the positive point. The hardest negative, which is the
closest point to the anchor point from another class, is used as the negative point:

minimize
θ

b∑
i=1

[
max

x j∈Xc(x i)
d
(
f(x i), f(x j)

)
− min

xk∈X\Xc(x i)
d
(
f(x i), f(xk)

)
+m

]
+
. (16)

Bath-hard mining uses hardest points so that the network learns the hardest cases. By
learning the hardest cases, other cases are expected to be learned properly. Learning
the hardest cases can also be justified by the opposition-based learning [22].

Batch-semi-hard: Batch-semi-hard triplet mining (2015) [11] considers every point in the
mini-batch as an anchor point. All points in the mini-batch which are in the same class
as the anchor point are used as positive points. The hardest negative (closest to the
anchor point from another class), which is farther than the positive point, is used as the
negative point:

minimize
θ

b∑
i=1

∑
x j∈Xc(x i)

[
d
(
f(x i), f(x j)

)
− min

xk∈X\Xc(x i)

{
d
(
f(x i), f(xk)

)
|

d
(
f(x i), f(xk)

)
> d

(
f(x i), f(x j)

)}
+m

]
+
.

(17)

Deep Metric Learning 29 / 37

Triplet Mining

Easy-positive: Easy-positive triplet mining (2020) [23] considers every point in the
mini-batch as an anchor point. The easiest positive (closest to the anchor point from the
same class) is used as the positive point. All points in the mini-batch which are in a
different class from the class of anchor point are used as negative points:

minimize
θ

b∑
i=1

∑
xk∈X\Xc(x i)

[
min

x j∈Xc(x i)
d
(
f(x i), f(x j)

)
− d

(
f(x i), f(xk)

)
+m

]
+
. (18)

We can use this triplet mining approach in NCA loss function. For example, we can have
[23]:

minimize
θ

b∑
i=1

minx j∈Xc(x i)
exp

(
f(x i)

⊤f(x j)
)

minx j∈Xc(x i)
exp

(
f(x i)⊤f(x j)

)
+

∑
xk∈X\Xc(x i)

exp
(
f(x i)⊤f(xk)

) , (19)

where the embeddings for all points of the mini-batch are normalized to have length one.

Deep Metric Learning 30 / 37

Triplet Sampling

Rather than using the extreme (hardest or easiest) positive and negative points [19], we
can sample positive and negative points from the points in the mini-batch or from
some distributions.

There are several approaches for the positive and negative points to be sampled [24]:
▶ Sampled by extreme distances of points,
▶ Sampled randomly from classes,
▶ Sampled by distribution but from existing points,
▶ Sampled stochastically from distributions of classes.

The first, second, and third approaches sample the positive and negative points from the
set of points in the mini-batch. This type of sampling is called survey sampling [25].

The third and fourth approaches sample points from distributions stochastically.

An example for the third approach, i.e., sampling by distribution but from existing points,
is distance weighted sampling (2017) [26]. An example for the forth approach is
Bayesian updating theorem (2021) [27].

Deep Metric Learning 31 / 37

Acknowledgment

This slide deck is based on our tutorial paper “Spectral, probabilistic, and deep metric
learning: Tutorial and survey” [18].

For more information on deep metric learning, refer to our tutorial paper [18].

Deep Metric Learning 32 / 37

References

[1] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and
survey,” arXiv preprint arXiv:2101.00734, 2021.

[2] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Generative adversarial networks and
adversarial autoencoders: Tutorial and survey,” arXiv preprint arXiv:2111.13282, 2021.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning.
MIT press, 2016.

[4] B. Ghojogh and M. Crowley, “Unsupervised and supervised principal component analysis:
Tutorial,” arXiv preprint arXiv:1906.03148, 2019.

[5] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Reproducing kernel Hilbert space,
Mercer’s theorem, eigenfunctions, Nyström method, and use of kernels in machine
learning: Tutorial and survey,” arXiv preprint arXiv:2106.08443, 2021.

[6] V. Vapnik, The nature of statistical learning theory.
Springer science & business media, 1995.

[7] M. Sikaroudi, A. Safarpoor, B. Ghojogh, S. Shafiei, M. Crowley, and H. R. Tizhoosh,
“Supervision and source domain impact on representation learning: A histopathology case
study,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC), pp. 1400–1403, IEEE, 2020.

Deep Metric Learning 33 / 37

References (cont.)

[8] M. Boudiaf, J. Rony, I. M. Ziko, E. Granger, M. Pedersoli, P. Piantanida, and I. B. Ayed,
“A unifying mutual information view of metric learning: cross-entropy vs. pairwise losses,”
in European Conference on Computer Vision, pp. 548–564, Springer, 2020.

[9] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Säckinger, and
R. Shah, “Signature verification using a âSiameseâ time delay neural network,”
International Journal of Pattern Recognition and Artificial Intelligence, vol. 7, no. 04,
pp. 669–688, 1993.

[10] E. Hoffer and N. Ailon, “Deep metric learning using triplet network,” in International
workshop on similarity-based pattern recognition, pp. 84–92, Springer, 2015.

[11] F. Schroff, D. Kalenichenko, and J. Philbin, “FaceNet: A unified embedding for face
recognition and clustering,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 815–823, 2015.

[12] L. Yang, M. Zhang, C. Li, M. Bendersky, and M. Najork, “Beyond 512 tokens: Siamese
multi-depth transformer-based hierarchical encoder for long-form document matching,” in
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management, pp. 1725–1734, 2020.

[13] S. Khodadadeh, L. Bölöni, and M. Shah, “Unsupervised meta-learning for few-shot image
classification,” in Advances in neural information processing systems, 2019.

Deep Metric Learning 34 / 37

References (cont.)

[14] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive
learning of visual representations,” in International conference on machine learning,
pp. 1597–1607, 2020.

[15] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “KKT conditions, first-order and
second-order optimization, and distributed optimization: Tutorial and survey,” arXiv
preprint arXiv:2110.01858, 2021.

[16] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant
mapping,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), vol. 2, pp. 1735–1742, IEEE, 2006.

[17] J. Goldberger, G. E. Hinton, S. T. Roweis, and R. R. Salakhutdinov, “Neighbourhood
components analysis,” in Advances in neural information processing systems, pp. 513–520,
2005.

[18] B. Ghojogh, A. Ghodsi, F. Karray, and M. Crowley, “Spectral, probabilistic, and deep
metric learning: Tutorial and survey,” arXiv preprint arXiv:2201.09267, 2022.

[19] M. Sikaroudi, B. Ghojogh, A. Safarpoor, F. Karray, M. Crowley, and H. R. Tizhoosh,
“Offline versus online triplet mining based on extreme distances of histopathology
patches,” in International Symposium on Visual Computing, pp. 333–345, Springer, 2020.

Deep Metric Learning 35 / 37

References (cont.)

[20] S. Ding, L. Lin, G. Wang, and H. Chao, “Deep feature learning with relative distance
comparison for person re-identification,” Pattern Recognition, vol. 48, no. 10,
pp. 2993–3003, 2015.

[21] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for person
re-identification,” arXiv preprint arXiv:1703.07737, 2017.

[22] H. R. Tizhoosh, “Opposition-based learning: a new scheme for machine intelligence,” in
International conference on computational intelligence for modelling, control and
automation and international conference on intelligent agents, web technologies and
internet commerce (CIMCA-IAWTIC’06), vol. 1, pp. 695–701, IEEE, 2005.

[23] H. Xuan, A. Stylianou, and R. Pless, “Improved embeddings with easy positive triplet
mining,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 2474–2482, 2020.

[24] B. Ghojogh, Data Reduction Algorithms in Machine Learning and Data Science.
PhD thesis, University of Waterloo, 2021.

[25] B. Ghojogh, H. Nekoei, A. Ghojogh, F. Karray, and M. Crowley, “Sampling algorithms,
from survey sampling to Monte Carlo methods: Tutorial and literature review,” arXiv
preprint arXiv:2011.00901, 2020.

Deep Metric Learning 36 / 37

References (cont.)

[26] C.-Y. Wu, R. Manmatha, A. J. Smola, and P. Krahenbuhl, “Sampling matters in deep
embedding learning,” in Proceedings of the IEEE International Conference on Computer
Vision, pp. 2840–2848, 2017.

[27] M. Sikaroudi, B. Ghojogh, F. Karray, M. Crowley, and H. R. Tizhoosh, “Batch-incremental
triplet sampling for training triplet networks using Bayesian updating theorem,” in 2020
25th International Conference on Pattern Recognition (ICPR), pp. 7080–7086, IEEE, 2021.

Deep Metric Learning 37 / 37

