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MLP

@ A(fully connected/neural network is a stack of layers of neural network where in every

layer, all the neurons of the previous layer are connected to all the neurons of the next
layer.
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@ Every layer of the fully connected neural network is called a fully connected layer or a

dense layer.

@ Each neuron in the fully connected neural network is a Perceptron neuron. That is why
this network is also called the Multi-Layer Perceptron (MLP).

@ MLP was proposed by Rosenblatt in 1958, in the same paper as Perceptron [1]. In that
paper, he proposed an MLP with three layers.
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Neuron

@ Each neuron in the fully connected neural network is a Perceptron neuron. So it has:
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> Summation of the outputs of previous layer multiplied by the weights of previous
layer:
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> Activation function:
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Layer as a Projection Lk Wy A

@ Every layer in the fully connected netyork can fe seen as a linear projection followed by

an activation function.
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@ The activation function is usually a frrear function because if all activation functions
4 are linear in the network, the ire network is collapsed to be one linear projection.
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Activation Function on & konefiy #"CM“”'("‘<

There exist various activation functions. Some of them are:

@ Linear (identity) function:

/}\ @ g(a) € (fooﬁ, o'(a) = 1.
@ Binary step:
_fo ifa<o iy { @
(ia) = { 1 fazo0; w’ (a) { undefined

@ Sign (signum) function:
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Activation Function
® Logistic (sigmoid) function: e Yw\ao\\v\\\b
v, e
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@ Hyperbolic tangent (tanh): <
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@ Gaussian (radi is_function):
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a(a) €[0,1], o'(a) =o(a)(l — a(a))‘.

9

(10)

(11)

6/10






Activation Function
@ Softplus [2] (2011):
o(a) = In(1+€%), o(a) €[0,00), o'(a)= 1+lefa. (12)

@ Rectified linear unit (ReLU) [3] (2010):‘_ﬁ\,“-Mw \W‘m ' ) i
. Ita<
o(a) = { 'g" :I. z ; g =max(0,a), o(a) €[0,0), o'(a)=< undefined ifa=0
_— = ~— | | @ if a> 0.
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@ Exponential Linear Unit (ELU) [4] (2015):
o(e?—1) ifa<o , o€’ ifa<0
o'(a)
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Activation Function

@ Leaky rectified linear unit (Leaky ReLU) [5] (2013):

. 0.01 ifa<o
o(a) = { 0.01a ifa<0 o(a) € (—o0,0), o'(a) = { undefined ifa=0

= 1 if 2> 0.

(15)
@ Parametric rectified linear unit (PReLU) [6] (2015):

. e ifa<0

o(a) = { @ |1f: z ; g ,  o(a) € (—o0,00), o'(a) =14 undefined ifa=0

t_’_/;j 1 if a> 0.
(16)
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whefre §;; is the Kronecker delta:
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@ Maxout [7] (2013):

. o J 1 if i =argmax;(oj)
g,-(a)fm, oi(a) € (—o0, 00), a(a)f{ 0 if#argmaxj_(aj_). (19)
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