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Introduction

In the lecture of “Training one neuron”, we were introduced to the neural networks with
only one layer and only one neuron.

In this lecture, we are introduced to the neural networks with only one [learnable] layer
but possibly multiple neurons.

Two of these networks are Radial Basis Function (RBF) network and Self-Organizing
Map (SOM).
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Radial Basis Function
Network
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Radial Basis Function Network

A Radial Basis Function (RBF) network was first proposed in 1988 [1, 2].

It has two layers but the first layer has fixed weights equal to one. The second layer has
learnable weights.

The first layer connects the data x ∈ Rd to m basis kernel functions {ϕi (x)}mi=1.

The second layer connects the basis functions {ϕi (x)}mi=1 to the output neurons {ŷj}kj=1.

The weight wij denotes the weight connecting ϕi (x) to ŷj .
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Radial Basis Function Network

The basis functions can be various kernel functions such as:

Gaussian distribution: ϕi (x) = e
−

∥x i−µi∥
2
2

2σ2
i , (1)

Logistic (sigmoid) function: ϕi (x) =
1

1 + e
−

∥x i−µi∥
2
2

2σ2
i

, (2)

where µi ∈ Rd and σ2
i ∈ R are the mean and variance for ϕi (x).

At the first step, the means {µi}mi=1 are found by applying a clustering method, such as
K-means, on the training data with m clusters. The variances of clusters determine the
variances {σi}mi=1.
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Radial Basis Function Network
RBF networks can be considered as an additive model. An additive model, first proposed
in [3], maps data to a space with several basis functions and then tries to learn a weighted
average of those bases.

In RBF, the output is obtained as:

ŷj = w1j ϕ1(x) + · · ·+ wmj ϕm(x) =
m∑
i=1

wij ϕi (x). (3)

Consider n data points together in a matrix X ∈ Rk×n. In matrix form:

Ŷ = W⊤Φ, (4)

where:

Rk×n ∋ Ŷ =

ŷ11 . . . ŷ1n
...

. . .
...

ŷk1 . . . ŷkn

 , Rm×k ∋ W =

w11 . . . w1k

...
. . .

...
wm1 . . . wmk

 ,

Rm×n ∋ Φ =

ϕ1(x1) . . . ϕ1(xn)
...

. . .
...

ϕm(x1) . . . ϕm(xn)

 .
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Radial Basis Function Network

Least squares error minimization between the label of data Y ∈ Rk×n and the output of
network Ŷ ∈ Rk×n:

minimize
W

∥Y − Ŷ ∥2F = ∥Y − W⊤Φ∥2F . (5)

Simplification of the cost function:

∥Y − W⊤Φ∥2F = tr
(
(Y − W⊤Φ)⊤(Y − W⊤Φ)

)
= tr

(
(Y⊤ −Φ⊤W )(Y − W⊤Φ)

)
= tr(Y⊤Y − Y⊤W⊤Φ−Φ⊤WY +Φ⊤WW⊤Φ)

(a)
= tr(Y⊤Y )− tr(W⊤ΦY⊤)− tr(WYΦ⊤) + tr(W⊤ΦΦ⊤W ),

where (a) is because of the linearity and cyclic property of the trace operator.

Solving this optimization problem:

∂

∂W
∥Y − W⊤Φ∥2F = −ΦY⊤ −ΦY⊤ + 2ΦΦ⊤W set

= 0 =⇒ ΦΦ⊤W = ΦY⊤

=⇒ W = (ΦΦ⊤)−1ΦY⊤. (6)
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Radial Basis Function Network

If ΦΦ⊤ is a singular matrix, the pseudo-inverse can be used:

W = (ΦΦ⊤)†ΦY⊤, (7)

where † denotes the pseudo-inverse of matrix.

The output of the RBF network, for either the training or test data, is:

Ŷ = W⊤Φ =
(
(ΦΦ⊤)−1ΦY⊤)⊤

Φ = YΦ⊤(ΦΦ⊤)−⊤Φ = YΦ⊤(ΦΦ⊤)−1Φ. (8)
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Self-Organizing Map
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Self-Organizing Map
Self-Organizing Map (SOM) is a neural network with one layer. It is used for unsupervised
clustering, where the name “self-organizing” comes from.

It was proposed by Teuvo Kohonen in 1982 [4]; therefore, it is also called the Kohonen
network [5].

It is one layer connecting x = [x1, . . . , xd ]
⊤ ∈ Rd to k neurons. Let wij denote the weight

connecting xi to the j-th neuron. Each neuron represents a cluster. SOM trains the
weights to cluster the input data x to one of the k clusters.

The neurons can be put in 1D or 2D structure.

Every neuron has a neighborhood around it in the 1D or 2D structure of neurons. This

neighborhood is decreased gradually during the training phase. Let N (τ)
j denote the

neighborhood of the j-th neuron at iteration τ .
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Self-Organizing Map
Step 1 of training: Initialize all weights to small random values. Set all neighborhoods

{N (0)
j }kj=1 to half of the neuron structure grid. Set the initial learning rate η(0) to a

number in range (0, 1].

Step 2 of training: Select one the input data points, x = [x1, . . . , xd ]
⊤, and feed it to the

network. Select the wining neuron z by:

z := argmin
j

d∑
i=1

∥xi − wij∥2. (9)

Step 3 of training: Update the weights of the neurons in the neighborhood of the winning
neuron z:

w
(τ+1)
ij :=

{
w

(τ)
ij + η(τ)(xi − w

(τ)
ij ) if j ∈ N (τ)

z

w
(τ)
ij Otherwise,

(10)

for all i ∈ {1, . . . , d}.
Step 4 of training: Decrease the learning rate and the neighborhoods:

η(τ+1) := η(0)(1−
τ

t
), (11)

N (τ+1)
j := N (τ+1)

j /2, ∀j ∈ {1, . . . , k}, (12)

where t denotes the total number of training iterations.

Step 5 of training: Increase τ and go to step 2.
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