
Attention Mechanism, Transformers, BERT, and GPT

Deep Learning (ENGG*6600*07)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Fall 2023

Attention Mechanism, Transformers, BERT, and GPT 1 / 57

Attention Mechanism

Attention Mechanism, Transformers, BERT, and GPT 2 / 57

Introduction
When looking at a scene or picture, our visual system, so as a machine learning model
[1], focuses on or attends to some specific parts of the scene/image with more information
and importance and ignores the less informative or less important parts.

Moreover, when reading a text, especially when we want to try fast reading, one
technique is skimming [2] in which our visual system or a model skims the data with high
pacing and only attends to more informative words of sentences [3].

The concept of attention can be modeled in machine learning where attention is a simple
weighting of data. In the attention mechanism, the more informative or more important
parts of data are given larger weights for the sake of more attention.

Attention Mechanism, Transformers, BERT, and GPT 3 / 57

Autoencoder and the Context Vector
Consider an autoencoder with encoder and decoder parts where the encoder gets an input
and converts it to a context vector and the decoder gets the context vector and converts
to an output.

The output is related to the input through the context vector in the so-called hidden
space.

An autoencoder has an encoder (left part of autoencoder), a hidden space (in the
middle), and a decoder (right part of autoencoder).

For example, the input can be a sentence or a word in English and the output is the same
sentence or word but in French. Assume the word “elephant” in English is fed to the
encoder and the word “l’éléphant” in French is output. The context vector models the
concept of elephant which also exists in the mind of human when thinking to elephant.
This context is abstract in mind and can be referred to any fat, thin, huge, or small
elephant [4].

Another example for transformer is transforming a cartoon image of elephant to picture
of a real elephant.
As the autoencoder is transforming data from a domain to a hidden space and then to
another domain, it can be used for domain transformation [5], domain adaptation [6],
and domain generalization [7].

Attention Mechanism, Transformers, BERT, and GPT 4 / 57

The Sequence-to-Sequence Model
The context is modeled as a vector in the hidden space. Let the context vector be
denoted by c ∈ Rp in the p-dimensional hidden space.
Consider a sequence of ordered tokens, e.g., a sequence of words which make a sentence.
We want to transform this sequence to another related sequence. For example, we want
to take a sentence in English and translate it to the same sentence in French. This model
which transforms a sequence to another related sequence is named the
sequence-to-sequence model [8].
Suppose the number of words in a document or considered sentence be n. Let the ordered
input tokens or words of the sequence be denoted by {x1, x2, . . . , x i−1, x i , . . . , xn} and
the output sequence be denoted by {y1, y2, . . . , y i−1, y i , . . . , yn}. As this figure
illustrates, there exist latent vectors, denoted by {l i}ni=1, in the decoder part for every
word.
In the sequence-to-sequence model, the probability of generation of the i-th word
conditioning on all the previous words is determined by a function g(.) whose inputs are
the immediate previous word y i−1, the i-th latent vector l i , and the context vector c:

P(y i |y1, . . . , y i−1) = g(y i−1, l i , c). (1)

Attention Mechanism, Transformers, BERT, and GPT 5 / 57

The Sequence-to-Sequence Model

In the sequence-to-sequence model, every word x i produces a hidden vector hi in the
encoder part of the autoencoder. The hidden vector of every word, hi , is fed to the next
hidden vector, hi+1, by a projection matrix W .

In this model, for the whole sequence, there is only one context vector c which is equal
to the last hidden vector of the encoder, i.e., c = hn.

Note that the encoder and decoder in the sequence-to-sequence model can be any
sequential model such as RNN [9] or LSTM [10].

Attention Mechanism, Transformers, BERT, and GPT 6 / 57

The Sequence-to-Sequence Model with Attention
In the sequence-to-sequence model with attention [11, 12], the probability of generation
of the i-th word is determined as [11]:

P(y i |y1, . . . , y i−1) = g(y i−1, l i , c i). (2)

In this model, in contrast to the sequence-to-sequence model which has only one context
vector for the whole sequence, this model has a context vector for every word.
The context vector of every word is a linear combination, or weighted sum, of all the
hidden vectors; hence, the i-th context vector is:

c i =
n∑

j=1

aijhj , (3)

where aij ≥ 0 is the weight of hj for the i-th context vector.
This weighted sum for a specific word in the sequence determines which words in the
sequence have more effect on that word. In other words, it determines which words this
specific word “attends” to more. This notion of weighted impact, to see which parts have
more impact, is called “attention”.

Attention Mechanism, Transformers, BERT, and GPT 7 / 57

The Sequence-to-Sequence Model with Attention

The original idea of arithmetic linear combination of vectors for the purpose of word
embedding, similar to Eq. (3), was in the Word2Vec method [13, 14].

The sequence-to-sequence model with attention considers a notion of similarity between
the latent vector l i−1 of the decoder and the hidden vector hj of the encoder [8]:

R ∋ sij := similarity(l i−1, hj). (4)

Intuition: The output word y i depends on the previous latent vector l i−1 and the hidden
vector hj depends on the input word x j . Hence, this similarity score relates to the impact
of the input x j on the output y i . In this way, the score sij shows the impact of the j-th
word to generate the i-th word in the sequence. This similarity notion can be a neural
network learned by backpropagation [15].

Attention Mechanism, Transformers, BERT, and GPT 8 / 57

The Sequence-to-Sequence Model with Attention

To make this score a probability, these scores should sum to one; hence, we make its
softmax form as [11]:

R ∋ aij :=
esij∑n
k=1 e

sik
. (5)

In this way, the score vector [ai1, ai2, . . . , ain]⊤ behaves as a discrete probability
distribution.

Therefore, In Eq. (3), c i =
∑n

j=1 aijhj , the weights sum to one and the weights with
higher values attend more to their corresponding hidden vectors.

Attention Mechanism, Transformers, BERT, and GPT 9 / 57

The Need for Composite Embedding

Many of the previous methods for NLP, such as word2vec [13, 14, 16, 17] and GloVe [18],
used to learn a representation for every word.

However, for understanding how the words relate to each other, we can have a composite
embedding where the compositions of words also have some embedding representation
[19].

For example, this figure shows a sentence which highlights the relation of words. This
figure shows, when reading a word in a sentence, which previous words in the sentence we
remember more. This relation of words shows that we need to have a composite
embedding for natural language embedding.

Attention Mechanism, Transformers, BERT, and GPT 10 / 57

Query-Retrieval Modeling
Consider a database with keys and values where a query is searched through the keys to
retrieve a value [20].

We can generalize this hard definition of query-retrieval to a soft query-retrieval where
several keys, rather than only one key, can be corresponded to the query. For this, we
calculate the similarity of the query with all the keys to see which keys are more similar
to the query:

attention(q, {k i}ni=1, {v i}ni=1) :=
n∑

i=1

aiv i , (6)

where:

R ∋ si := similarity(q, k i), (7)

R ∋ ai := softmax(si) =
esi∑n
k=1 e

sk
, (8)

and q, {k i}ni=1, and {v i}ni=1 denote the query, keys, and values, respectively.

Attention Mechanism, Transformers, BERT, and GPT 11 / 57

Query-Retrieval Modeling
An illustration of Eqs. (6), (7), and (8) is shown in this figure.

attention(q, {k i}ni=1, {v i}ni=1) :=
n∑

i=1

aiv i ,

R ∋ si := similarity(q, k i),

R ∋ ai := softmax(si) =
esi∑n
k=1 e

sk
.

Attention Mechanism, Transformers, BERT, and GPT 12 / 57

Query-Retrieval Modeling

The similarity si can be any notion of similarity. Some of the well-known similarity
measures are [21]:

inner product: si = q⊤k i , (9)

scaled inner product: si =
q⊤k i√

p
, (10)

general inner product: si = q⊤Wk i , (11)

additive similarity: si = w⊤
q q + w⊤

k k i , (12)

where W ∈ Rp×p , wq ∈ Rp , and wk ∈ Rp are some learnable matrices and vectors.

Among these similarity measures, the scaled inner product is used most often.

Attention Mechanism, Transformers, BERT, and GPT 13 / 57

Query-Retrieval Modeling

The Eq. (6), attention(q, {k i}ni=1, {v i}ni=1) :=
∑n

i=1 aiv i , calculates the attention of a
target word (or query) with respect to every other input word (or keys) which are the
previous and forthcoming words.

Using Eq. (6), we see how similar the other words of the sequence are to that word. In
other words, we see how impactful the other previous and forthcoming words are for
generating a missing word in the sequence.

Example:
▶ Sentence: “I am a student”.
▶ We are processing the word “student”.
▶ Query: “student”
▶ Values: “I”, “am”, “a”
▶ Normalized similarity of the query and the values: weights 0.7, 0.2, and 0.1 for “I”,

“am”, and “a”, respectively.
▶ The attention value for the word “student”: 0.7v I + 0.2vam + 0.1va.

Attention Mechanism, Transformers, BERT, and GPT 14 / 57

Attention Formulation

Let the words of a sequence of words be in a d-dimensional space, i.e., the sequence is
{x i ∈ Rd}ni=1. This d-dimensional representation of words can be taken from any
word-embedding NLP method such as word2vec [13, 14, 16, 17] or GloVe [18].

The query, key, and value are projection of the words into p-dimensional, p-dimensional,
and r -dimensional subspaces, respectively:

Rp ∋ q i = W⊤
Q x i , (13)

Rp ∋ k i = W⊤
K x i , (14)

Rr ∋ v i = W⊤
V x i , (15)

where WQ ∈ Rd×p , WK ∈ Rd×p , and W V ∈ Rd×r are the projection matrices into the
low-dimensional query, key, and value subspaces, respectively.

Consider the words, queries, keys, and values in matrix forms as
X := [x1, . . . , xn] ∈ Rd×n, Q := [q1, . . . , qn] ∈ Rp×n, K := [k1, . . . , kn] ∈ Rp×n, and
V := [v1, . . . , vn] ∈ Rr×n, respectively.

In the similarity measures, such as the scaled inner product, we have the inner product
q⊤k i . Hence, the similarity measures contain q⊤k i = x⊤

i WQ W⊤
K x i . This is like a

kernel matrix so its behaviour is similar to the kernel for measuring similarity.

Attention Mechanism, Transformers, BERT, and GPT 15 / 57

Attention Formulation

Considering Eqs. (7), and (8) and the above definitions, the Eq. (6) can be written in
matrix form, for the whole sequence of n words, as:

Rr×n ∋ Z := attention(Q,K ,V) = V softmax(
1
√
p
Q⊤K), (16)

where Z = [z1, . . . , zn] is the attention values, for all the words, which shows how much
every word attends to its previous and forthcoming words. In Eq. (16), the softmax
operator applies the softmax function on every row of its input matrix so that every row
sums to one.

As the queries, keys, and values are all from the same words in the sequence, this
attention is referred to as the “self-attention” [19].

Attention Mechanism, Transformers, BERT, and GPT 16 / 57

Attention in Other Fields Such as Vision and Speech
The attention concept has widely been used in NLP [11, 12]. Attention can be used in
the field of computer vision [22]. Attention in computer vision means attending to
specific parts of image which are more important and informative.

We can consider the extracted low-layer features, which are different parts of image, as

the hidden vectors {hj}n
′

j=1 in Eq. (4), where n′ is the number of features for extracted

image partitions. Similarity with latent vectors of decoder (LSTM) is computed by Eq.
(4) and the query-retrieval model of attention mechanism, introduced before, is used to
learn a self-attention on the images. Note that, as the partitions of image are considered
to be the hidden variables used for attention, the model attends to important parts of
input image.

Attention Mechanism, Transformers, BERT, and GPT 17 / 57

Attention in Other Fields Such as Vision and Speech

Using attention in different fields of science is usually referred to as “attend, tell, and do
something...”.

Some examples of applications of attention are caption generation for images (show,
attend and tell) [22], caption generation for images with ownership protection (protect,
show, attend and tell) [23], text reading from images containing a text (show, attend and
read) [24], translation of one image to another related image (show, attend and translate)
[25, 26], visual question answering (show, ask, attend, and answer) [27], human-robot
social interaction (show, attend and interact) [28], and speech recognition (listen, attend
and spell) [29, 30].

Attention Mechanism, Transformers, BERT, and GPT 18 / 57

Transformer

Attention Mechanism, Transformers, BERT, and GPT 19 / 57

The Concept of Transformation

As explained before, we can have an autoencoder which takes an input data, embeds data
to a context vector which simulates a concept in human’s mind [4], and generates an
output. The input and output are related to each other through the context vector. In
other words, the autoencoder transforms the input to a related output.

An example for transformation is translating a sentence from a language to the same
sentence in another language. Another example for transformer is image captioning in
which the image is transformed to its caption explaining the content of image.

An autoencoder, named “transformer”, is proposed in the literature for the task for
transformation [21].

Attention Mechanism, Transformers, BERT, and GPT 20 / 57

Transformer Structure

The structure of transformer is depicted in this figure. A transformer is an autoencoder
consisting of an encoder and a decoder.

Attention Mechanism, Transformers, BERT, and GPT 21 / 57

Encoder of
Transformer

Attention Mechanism, Transformers, BERT, and GPT 22 / 57

Encoder of Transformer: Positional Encoding

The encoder part of transformer embeds the input sequence of n words X ∈ Rd×n into
context vectors with the attention mechanism.

We will explain later that transformer does not have any recurrence and RNN or LSTM
module. As there is no recurrence and no convolution, the model has no sense of order in
sequence. As the order of words is important for meaning of sentences, we need a way to
account for the order of tokens or words in the sequence. For this, we can add a vector
accounting for the position to each input word embedding.

Attention Mechanism, Transformers, BERT, and GPT 23 / 57

Encoder of Transformer: Positional Encoding

Consider the embedding of the i-th word in the sequence, denoted by x i ∈ Rd . For
encoding the position of the i-th word in the sequence, the position vector pi ∈ Rd can
be set as: 

pi (2j + 1) := cos
(

i

10000
2j
p

)
,

pi (2j) := sin
(

i

10000
2j
p

)
,

(17)

for all j ∈ {0, 1, . . . , ⌊d/2⌋}, where pi (2j + 1) and pi (2j) denote the odd and even
elements of pi , respectively.

Attention Mechanism, Transformers, BERT, and GPT 24 / 57

Encoder of Transformer: Positional Encoding

This figure illustrates the dimensions of the position vectors across different positions.
The position vectors for different positions of words are different as expected. Moreover,
this figure shows that the difference of position vectors concentrate more on the initial
dimensions of vectors.

For incorporating the information of position with data, we add the positional encoding to
the input embedding:

x i ← x i + pi . (18)

Attention Mechanism, Transformers, BERT, and GPT 25 / 57

Multihead Attention with Self-Attention
After positional encoding, data are fed to a multihead attention module with
self-attention.

This module applies the attention mechanism for h times.

This several repeats of attention is for the reason explained here. The first attention
determines how much every word attends to other words. The second repeat of attention
calculates how much every pair of words attends to other pairs of words. Likewise, the
third repeat of attention sees how much every pair of pairs of words attends to other pairs
of pairs of words; and so on.

This measure of attention or similarity between hierarchical pairs of words reminds us of
the maximum mean discrepancy [31, 32] which measures similarity between different
moments of data distributions.

Attention Mechanism, Transformers, BERT, and GPT 26 / 57

Multihead Attention with Self-Attention
The data, which include positional encoding, are passed from linear layers for obtaining
the queries, values, and keys. These linear layers model linear projections introduced in
Eqs. (13), (15), and (14), respectively. We have h of these linear layers to generate h set
of queries, values, and keys as:

Rp×n ∋ Q i = W⊤
Q,iX , ∀i ∈ {1, . . . , h}, (19)

Rp×n ∋ V i = W⊤
V ,iX , ∀i ∈ {1, . . . , h}, (20)

Rr×n ∋ K i = W⊤
K ,iX , ∀i ∈ {1, . . . , h}. (21)

Attention Mechanism, Transformers, BERT, and GPT 27 / 57

Multihead Attention with Self-Attention

Then, the scaled dot product similarity, defined in Eq. (10) or (16), is used to generate
the h attention values {Z i}hi=1. These h attention values are concatenated to make a new
long flattened vector. Then, by a linear layer, which is a linear projection, the total
attention value, Z t , is obtained:

Z t := W⊤
O concat(Z1,Z2, . . . ,Zh). (22)

Attention Mechanism, Transformers, BERT, and GPT 28 / 57

Layer Normalization
The data (containing positional encoding) and the total attention value are added:

Z ′
t ← Z t + X . (23)

This addition is inspired by the concept of residual introduced by ResNet [33].
After this addition, a layer normalization is applied where for each hidden unit hi we have:

hi ←
g

σ
(hi − µ), (24)

where µ and σ are the empirical mean and standard deviation over H hidden units:

µ :=
1

H

H∑
i=1

hi , σ :=

√√√√ H∑
i=1

(hi − µ)2. (25)

This is a standardization which makes the mean zero and the variance one; it is closely
related to batch normalization and reduces the covariate shift [34].

Attention Mechanism, Transformers, BERT, and GPT 29 / 57

Feedforward Layer
Henceforth, let Z ′

t denote the total attention after both addition and layer normalization.

We feed Z ′
t to a feedforward network, having nonlinear activation functions, and then like

before, we add the input of feedforward network to its output:

Z ′′
t ← R + Z ′

t , (26)

where R denotes the output of feedforward network.

Again, layer normalization is applied and we, henceforth, denote the output of encoder by
Z ′′

t .

This is the encoding for the whole input sequence or sentence having the information of
attention of words and hierarchical pairs of words to each other.

Attention Mechanism, Transformers, BERT, and GPT 30 / 57

Stacking

The encoder is a stack of N identical layers.

This stacking is for having more learnable parameters to have enough degree of freedom
to learn the whole dictionary of words.

Through experiments, a good number of stacks is found to be N = 6 [21].

Attention Mechanism, Transformers, BERT, and GPT 31 / 57

Decoder of
Transformer

Attention Mechanism, Transformers, BERT, and GPT 32 / 57

Masked Multihead Attention with Self-Attention

A part of decoder is the masked multihead attention module whose
input is the output embeddings {y i}ni=1 shifted one word to the right.

Positional encoding is also added to the output embeddings for
including the information of their positions. For this, we use Eq. (18)
where x i is replaced by y i .

The output embeddings added with the positional encodings are fed to
the masked multihead attention module. This module is similar to the
multihead attention module but masks away the forthcoming words
after a word.

Therefore, every output word only attends to its previous output
words, every pair of output words attends to its previous pairs of
output words, every pair of pairs of output words attends to its
previous pairs of pairs of output words, and so on.

The reason for using the masked version of multihead attention for the
output embeddings is that when we are generating the output text, we
do not have the next words yet because the next words are not
generated yet.

This masking imposes some idea of sparsity which was also introduced
by the dropout technique [35] but in a stochastic manner.

Attention Mechanism, Transformers, BERT, and GPT 33 / 57

Masked Multihead Attention with Self-Attention

Recall Eq. (16) which was used for multihead attention. The masked
multihead attention is defined as:

Rr×n ∋ Zm := maskedAttention(Q,K ,V)

= V softmax
(1
√
p

(
Q⊤K + M

))
,

(27)

where the mask matrix M ∈ Rn×n is:

M(i , j) :=

{
0 if j ≤ i ,
−∞ if j > i .

(28)

As the softmax function has exponential operator, the mask does not
have any impact for j ≤ i (because it is multiplied by e0 = 1) and
masks away for j > i (because it is multiplied by e−∞ = 0). Note that
j ≤ i and j > i correspond to the previous and next words,
respectively, in terms of position in the sequence.

Similar to before, the output of masked multihead attention is
normalized and then is added to its input.

Attention Mechanism, Transformers, BERT, and GPT 34 / 57

Multihead Attention with Cross-Attention

The output of masked multihead attention module is fed to a
multihead attention module with cross-attention.

This module is not self-attention because all its values, keys, and
queries are not from the same sequence but its values and keys are
from the output of encoder and the queries are from the output of
the masked multihead attention module in the decoder.

In other words, the values and keys come from the processed input
embeddings and the queries are from the processed output
embeddings.

The calculated multihead attention determines how much every output
embedding attends to the input embeddings, how much every pair of
output embeddings attends to the pairs of input embeddings, how
much every pair of pairs of output embeddings attends to the pairs of
pairs of input embeddings, and so on.

This shows the connection between input sequence and the generated
output sequence.

Attention Mechanism, Transformers, BERT, and GPT 35 / 57

Feedforward Layer and Softmax Activation

Again, the output of the multihead attention module with
cross-attention is normalized and added to its input.

Then, it is fed to a feedforward neural network with layer
normalization and added to its input afterwards.

The masked multihead attention, the multihead attention with
cross-attention, and the feedforward network are stacked for N = 6
times.

The output of feedforward network passes through a linear layer by
linear projection and a softmax activation function is applied finally.

The number of output neurons with the softmax activation functions is
the number of all words in the dictionary which is a large number.

The outputs of decoder sum to one and are the probability of every
word in the dictionary to be the generated next word. For the sake of
sequence generation, the token or word with the largest probability is
the next word.

Attention Mechanism, Transformers, BERT, and GPT 36 / 57

Complexity of
Attention

Attention Mechanism, Transformers, BERT, and GPT 37 / 57

Attention is All We Need!

The output of decoder is fed to the masked multihead attention module of decoder with
some shift.

This is not a notion of recurrence. Hence, we see that there is not any recurrent module
like RNN [9] and LSTM [10] in transformer. Therefore, attention is all we need to learn a
sequence and there is no need to any recurrence module.

The proposal of transformers [21] was a breakthrough in NLP; the state-of-the-art NLP
methods are all based on transformers nowadays.

Attention Mechanism, Transformers, BERT, and GPT 38 / 57

Complexity Comparison
In self-attention, we learn attention of every word to every other word in the sequence of
n words. Also, we learn a p-dimensional embedding for every word. Hence, the
complexity of operations per layer is O(n2p). This is while the complexity per layer in
recurrence is O(np2).

Although, the complexity per layer in self-attention is worse than recurrence, many of its
operations can be performed in parallel because all the words of sequence are processed
simultaneously, as also explained in the following. Hence, the O(n2p) is not very bad for
being able to parallelize it. That is while the recurrence cannot be parallelized for its
sequential nature.

As for the number of sequential operations, the self-attention mechanism processes all
the n words simultaneously so its sequential operations is in the order of O(1). As
recurrence should process the words sequentially, the number of its sequential operations
is of order O(n).

As for the maximum path length between every two words, self-attention learns attention
between every two words; hence, its maximum path length is of the order O(1).
However, in recurrence, as every word requires a path with a length of a fraction of
sequence (a length of n in the worst case) to reach the process of another word, its
maximum path length is O(n).

Attention Mechanism, Transformers, BERT, and GPT 39 / 57

BERT

Attention Mechanism, Transformers, BERT, and GPT 40 / 57

BERT
BERT (Bidirectional Encoder Representations from Transformers) [36] is one of the
state-of-the-art methods for NLP. It is a stack of encoders of transformer. In other
words, it is built using transformer encoder blocks.

Although some NLP methods such as XLNet [37] have slightly outperformed it, BERT is
still one of the best models for different NLP tasks such as question answering [38],
natural language understanding [39], sentiment analysis, and language inference [40].

BERT uses the technique of masked language modeling. It masks 15% of words in the
input document/corpus and asks the model to predict the missing words. A sentence with
a missing word is given to every transformer encoding block in the stack and the block
is supposed to predict the missing word.

It is an unsupervised manner because any word can be masked in a sentence and the
output is supposed to be that word. As it is unsupervised and does not require labels, the
huge text data of Internet can be used for training the BERT model where words are
randomly selected to be masked.

Attention Mechanism, Transformers, BERT, and GPT 41 / 57

BERT

BERT learns to predict the missing word based on attention to its previous and
forthcoming words so it is bidirectional. Hence, BERT jointly conditions on both left
(previous) and right (forthcoming) context of every word.

Moreover, as the missing word is predicted based on the other words of sentence, BERT
embeddings for words are context-aware embeddings. Therefore, in contrast to word2vec
[13, 14, 16, 17] and GloVe [18] which provide a single embedding per each word, every
word has different BERT embeddings in various sentences.

The BERT embeddings of words differ in different sentences based on their context. For
example, the word “bank” has different meanings and therefore different embeddings in
the sentences “Money is in the bank” and “Some plants grow in bank of rivers”.

It is also noteworthy that, for an input sentence, BERT outputs an embedding for the
whole sentence in addition to giving embeddings for every word of the sentence. This
sentence embedding is not perfect but works well enough in applications. One can use the
BERT sentence embeddings and train a classifier on them for the task of spam detection
or sentiment analysis.

The BERT model is usually not trained from the scratch as its training has been done in a
long time on huge amount of Internet data. For using it in different NLP applications,
such as sentiment analysis, researchers usually do transfer learning and add one or
several neural network layers on top of a pre-trained BERT model and train the network
for their own task. During training, one can either freeze the weights of the BERT model
and just train the added layers or also fine tune BERT weights by backpropagation.

Attention Mechanism, Transformers, BERT, and GPT 42 / 57

BERT

The parameters of encoder in transformer [21] are 6 encoder layers, 512 hidden layer
units in the fully connected network and 8 attention heads (h = 8).

This is while BERT [36] has 24 encoder layers, 1024 hidden layer units in the fully
connected network and 16 attention heads (h = 16).

Usually, when we say BERT, we mean the large BERT [36] with the above-mentioned
parameters.

As the BERT model is huge and requires a lot of memory for saving the model, it cannot
easily be used in embedded systems. Hence, many commercial smaller versions of BERT
are proposed with less number of parameters and number of stacks. Some of these
smaller versions of BERT are small BERT [41], tiny BERT [42], DistilBERT [43], and
Roberta BERT [44].

Some BERT models, such as clinical BERT [45] and BioBERT [46], have also been
trained on medical texts for the biomedical applications.

Attention Mechanism, Transformers, BERT, and GPT 43 / 57

GPT

Attention Mechanism, Transformers, BERT, and GPT 44 / 57

GPT
GPT (Generative Pre-trained Transformer), or GPT-1, [47] is another state-of-the-art
method for NLP.
It is a stack of decoders of transformer. In other words, it is built using transformer
decoder blocks.
In GPT, the multihead attention module with cross-attention is removed from the
decoder of transformer because there is no encoder in GPT.
Hence, the decoder blocks used in GPT have only positional encoding, masked multihead
self-attention module and feedforward network with their adding, layer normalization,
and activation functions.
As GPT uses the masked multihead self-attention, it considers attention of word, pairs of
words, pairs of pairs of words, and so on, only on the previous (left) words, pairs of words,
pairs of pairs of words, and so on. In other words, GPT is not bidirectional and
conditions only on the previous words and not the forthcoming words.
The objective of BERT was to predict a masked word in a sentence. However, GPT
model is used for language model [48, 49, 50] whose objective is to predict the next
word, in an incomplete sentence, given all of the previous words.
The predicted new word is then added to the sequence and is fed to the GPT as input
again and the other next word is predicted. This goes on until the sentences get complete
with their next coming words.
In other words, GPT model takes some document and continues the text in the best and
related way. For example, if the input sentences are about psychology, the trained GPT
model generates the next words and sentences also about psychology to complete the
document.
As any text without label can be used for predicting the next words in sentences, GPT is
an unsupervised method making it possible to be trained on huge amount of Internet
data. Attention Mechanism, Transformers, BERT, and GPT 45 / 57

GPT

The successors of GPT-1 [47] are GPT-2 [51] and GPT-3 [52]. GPT-2 and GPT-3 are
extension of GPT-1 with more number of stacks of transformer decoder. Hence, they
have more learnable parameters and can be trained with more data for better language
modeling and inference.

For example, GPT-2 has 1.5 billion parameters.

GPT-2 and especially GPT-3 have been trained with much more Internet data with
various general and academic subjects to be able to generate text in any subject and style
of interest. For example, GPT-2 has been trained on 8 million web pages which contain
40GB of Internet text data.

GPT-2 is a quite large model and cannot be easily used in embedded systems because of
requiring large memory. Hence, different sizes of GPT-2, like small, medium, large,
Xlarge, and DistilGPT-2, are provided for usage in embedded systems, where the number
of stacks and learnable parameters differ in these versions. These versions of GPT-2 can
be found and used in the HuggingFace transformer Python package [53].

GPT-2 has been used in many different applications such as dialogue systems [54],
patent claim generation [55], and medical text simplification [56]. A combination of
GPT-2 and BERT has been used for question answering [57].

It is noteworthy that GPT can be seen as few shot learning [52]. A comparison of GPT
and BERT can also be found in [58].

Attention Mechanism, Transformers, BERT, and GPT 46 / 57

GPT

GPT-3 is a very huge version of GPT with so many number of stacks and learnable
parameters. For comparison, note that GPT-2, NVIDIA Megatron [59], Microsoft
Turing-NLG [60], and GPT-3 [52] have 1.5 billion, 8 billion, 17 billion, and 175 billion
learnable parameters, respectively.

This huge number of parameters allows GPT-3 to be trained on very huge amount of
Internet text data with various subjects and topics.

Hence, GPT-3 has been able to learn almost all topics of documents and even some
people are discussing whether it can pass the Turing’s writer’s test [61, 62].

Note that GPT-3 has kind of memorized the texts of all subjects but not in a bad way,
i.e., overfitting, rather in a good way. This memorization is because of the complexity of
huge number of learnable parameters [63] and not being overfitted is because of being
trained by big enough Internet data.

GPT-3 has had many different interesting applications such as fiction and poetry
generation [64].

Attention Mechanism, Transformers, BERT, and GPT 47 / 57

Acknowledgment

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi (at University
of Waterloo, Department of Statistics) and Prof. Pascal Poupart (at University of
Waterloo, Department of Computer Science).

This lecture is based on our tutorial paper: Benyamin Ghojogh, Ali Ghodsi, “Attention
mechanism, transformers, BERT, and GPT: Tutorial and survey” [65]

Attention Mechanism, Transformers, BERT, and GPT 48 / 57

References

[1] Y. Li, L. Kaiser, S. Bengio, and S. Si, “Area attention,” in International Conference on
Machine Learning, pp. 3846–3855, PMLR, 2019.

[2] J. Xu, “On the techniques of English fast-reading,” in Theory and Practice in Language
Studies, vol. 1, pp. 1416–1419, Academy Publisher, 2011.

[3] K. Yu, Y. Liu, A. G. Schwing, and J. Peng, “Fast and accurate text classification:
Skimming, rereading and early stopping,” in International Conference on Learning
Representations, 2018.

[4] L. I. Perlovsky, “Toward physics of the mind: Concepts, emotions, consciousness, and
symbols,” Physics of Life Reviews, vol. 3, no. 1, pp. 23–55, 2006.

[5] Y. Wang, L. Wang, S. Shi, V. O. Li, and Z. Tu, “Go from the general to the particular:
Multi-domain translation with domain transformation networks,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 9233–9241, 2020.

[6] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan, “A
theory of learning from different domains,” Machine learning, vol. 79, no. 1-2,
pp. 151–175, 2010.

[7] Q. Dou, D. Coelho de Castro, K. Kamnitsas, and B. Glocker, “Domain generalization via
model-agnostic learning of semantic features,” Advances in Neural Information Processing
Systems, vol. 32, pp. 6450–6461, 2019.

Attention Mechanism, Transformers, BERT, and GPT 49 / 57

References (cont.)

[8] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to
align and translate,” in International Conference on Learning Representations, 2015.

[9] S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget, “Recurrent neural network based
language modeling in meeting recognition,” in Twelfth annual conference of the
international speech communication association, 2011.

[10] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9,
no. 8, pp. 1735–1780, 1997.

[11] J. Chorowski, D. Bahdanau, K. Cho, and Y. Bengio, “End-to-end continuous speech
recognition using attention-based recurrent NN: First results,” arXiv preprint
arXiv:1412.1602, 2014.

[12] M.-T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based
neural machine translation,” arXiv preprint arXiv:1508.04025, 2015.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” in International Conference on Learning Representations,
2013.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Advances in neural
information processing systems, pp. 3111–3119, 2013.

Attention Mechanism, Transformers, BERT, and GPT 50 / 57

References (cont.)

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[16] Y. Goldberg and O. Levy, “word2vec explained: deriving Mikolov et al.’s negative-sampling
word-embedding method,” arXiv preprint arXiv:1402.3722, 2014.

[17] T. Mikolov, K. Chen, G. S. Corrado, and J. A. Dean, “Computing numeric representations
of words in a high-dimensional space,” May 19 2015.
US Patent 9,037,464.

[18] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods in natural
language processing, pp. 1532–1543, 2014.

[19] J. Cheng, L. Dong, and M. Lapata, “Long short-term memory-networks for machine
reading,” in Conference on Empirical Methods in Natural Language Processing,
pp. 551–561, 2016.

[20] H. Garcia-Molina, J. D. Ullman, and J. Widom, Database systems: The complete book.
Prentice Hall, 1999.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” in Advances in neural information processing
systems, pp. 5998–6008, 2017.

Attention Mechanism, Transformers, BERT, and GPT 51 / 57

References (cont.)

[22] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel, and Y. Bengio,
“Show, attend and tell: Neural image caption generation with visual attention,” in
International conference on machine learning, pp. 2048–2057, 2015.

[23] J. H. Lim, C. S. Chan, K. W. Ng, L. Fan, and Q. Yang, “Protect, show, attend and tell:
Image captioning model with ownership protection,” arXiv preprint arXiv:2008.11009, 2020.

[24] H. Li, P. Wang, C. Shen, and G. Zhang, “Show, attend and read: A simple and strong
baseline for irregular text recognition,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, pp. 8610–8617, 2019.

[25] H. Zhang, W. Chen, J. Tian, Y. Wang, and Y. Jin, “Show, attend and translate: Unpaired
multi-domain image-to-image translation with visual attention,” arXiv preprint
arXiv:1811.07483, 2018.

[26] C. Yang, T. Kim, R. Wang, H. Peng, and C.-C. J. Kuo, “Show, attend, and translate:
Unsupervised image translation with self-regularization and attention,” IEEE Transactions
on Image Processing, vol. 28, no. 10, pp. 4845–4856, 2019.

[27] V. Kazemi and A. Elqursh, “Show, ask, attend, and answer: A strong baseline for visual
question answering,” arXiv preprint arXiv:1704.03162, 2017.

[28] A. H. Qureshi, Y. Nakamura, Y. Yoshikawa, and H. Ishiguro, “Show, attend and interact:
Perceivable human-robot social interaction through neural attention q-network,” in 2017
IEEE International Conference on Robotics and Automation, pp. 1639–1645, IEEE, 2017.

Attention Mechanism, Transformers, BERT, and GPT 52 / 57

References (cont.)

[29] W. Chan, N. Jaitly, Q. V. Le, and O. Vinyals, “Listen, attend and spell,” arXiv preprint
arXiv:1508.01211, 2015.

[30] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell: A neural network for
large vocabulary conversational speech recognition,” in 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 4960–4964, IEEE, 2016.

[31] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola, “A kernel method for
the two-sample-problem,” in Advances in neural information processing systems,
pp. 513–520, 2007.

[32] A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola, “A kernel
two-sample test,” The Journal of Machine Learning Research, vol. 13, no. 1, pp. 723–773,
2012.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,” The journal of machine learning
research, vol. 15, no. 1, pp. 1929–1958, 2014.

Attention Mechanism, Transformers, BERT, and GPT 53 / 57

References (cont.)

[36] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep
bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[37] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “XLnet:
Generalized autoregressive pretraining for language understanding,” in Advances in neural
information processing systems, pp. 5753–5763, 2019.

[38] C. Qu, L. Yang, M. Qiu, W. B. Croft, Y. Zhang, and M. Iyyer, “BERT with history answer
embedding for conversational question answering,” in Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 1133–1136, 2019.

[39] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H.-W. Hon,
“Unified language model pre-training for natural language understanding and generation,”
in Advances in Neural Information Processing Systems, pp. 13063–13075, 2019.

[40] Y. Song, J. Wang, Z. Liang, Z. Liu, and T. Jiang, “Utilizing BERT intermediate layers for
aspect based sentiment analysis and natural language inference,” arXiv preprint
arXiv:2002.04815, 2020.

[41] H. Tsai, J. Riesa, M. Johnson, N. Arivazhagan, X. Li, and A. Archer, “Small and practical
BERT models for sequence labeling,” arXiv preprint arXiv:1909.00100, 2019.

Attention Mechanism, Transformers, BERT, and GPT 54 / 57

References (cont.)

[42] X. Jiao, Y. Yin, L. Shang, X. Jiang, X. Chen, L. Li, F. Wang, and Q. Liu, “TinyBERT:
Distilling BERT for natural language understanding,” arXiv preprint arXiv:1909.10351,
2019.

[43] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a distilled version of bert:
smaller, faster, cheaper and lighter,” arXiv preprint arXiv:1910.01108, 2019.

[44] I. Staliūnaitė and I. Iacobacci, “Compositional and lexical semantics in RoBERTa, BERT
and DistilBERT: A case study on CoQA,” arXiv preprint arXiv:2009.08257, 2020.

[45] E. Alsentzer, J. R. Murphy, W. Boag, W.-H. Weng, D. Jin, T. Naumann, and
M. McDermott, “Publicly available clinical BERT embeddings,” arXiv preprint
arXiv:1904.03323, 2019.

[46] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang, “BioBERT: a
pre-trained biomedical language representation model for biomedical text mining,”
Bioinformatics, vol. 36, no. 4, pp. 1234–1240, 2020.

[47] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” tech. rep., OpenAI, 2018.

[48] R. Rosenfeld, “Two decades of statistical language modeling: Where do we go from
here?,” Proceedings of the IEEE, vol. 88, no. 8, pp. 1270–1278, 2000.

[49] R. Jozefowicz, O. Vinyals, M. Schuster, N. Shazeer, and Y. Wu, “Exploring the limits of
language modeling,” arXiv preprint arXiv:1602.02410, 2016.

Attention Mechanism, Transformers, BERT, and GPT 55 / 57

References (cont.)

[50] K. Jing and J. Xu, “A survey on neural network language models,” arXiv preprint
arXiv:1906.03591, 2019.

[51] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language models are
unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.

[52] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan,
P. Shyam, G. Sastry, A. Askell, et al., “Language models are few-shot learners,” in
Advances in neural information processing systems, 2020.

[53] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, et al., “HuggingFace’s transformers: State-of-the-art natural
language processing,” arXiv preprint arXiv:1910.03771, 2019.

[54] P. Budzianowski and I. Vulić, “Hello, it’s GPT-2–how can I help you? Towards the use of
pretrained language models for task-oriented dialogue systems,” arXiv preprint
arXiv:1907.05774, 2019.

[55] J.-S. Lee and J. Hsiang, “Patent claim generation by fine-tuning OpenAI GPT-2,” arXiv
preprint arXiv:1907.02052, 2019.

[56] H. Van, D. Kauchak, and G. Leroy, “AutoMeTS: The autocomplete for medical text
simplification,” arXiv preprint arXiv:2010.10573, 2020.

[57] T. Klein and M. Nabi, “Learning to answer by learning to ask: Getting the best of gpt-2
and bert worlds,” arXiv preprint arXiv:1911.02365, 2019.

Attention Mechanism, Transformers, BERT, and GPT 56 / 57

References (cont.)

[58] K. Ethayarajh, “How contextual are contextualized word representations? Comparing the
geometry of BERT, ELMo, and GPT-2 embeddings,” arXiv preprint arXiv:1909.00512,
2019.

[59] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-LM: Training multi-billion parameter language models using model parallelism,”
arXiv preprint arXiv:1909.08053, 2019.

[60] Microsoft, “Turing-NLG: A 17-billion-parameter language model by Microsoft.” Microsoft
Blog, 2020.

[61] K. Elkins and J. Chun, “Can GPT-3 pass a writerâs Turing test?,” Journal of Cultural
Analytics, vol. 2371, p. 4549, 2020.

[62] L. Floridi and M. Chiriatti, “GPT-3: Its nature, scope, limits, and consequences,” Minds
and Machines, pp. 1–14, 2020.

[63] D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj,
A. Fischer, A. Courville, Y. Bengio, and S. Lacoste-Julien, “A closer look at memorization
in deep networks,” in International Conference on Machine Learning, 2017.

[64] G. Branwen, “GPT-3 creative fiction.” https://www.gwern.net/GPT-3, 2020.

[65] B. Ghojogh and A. Ghodsi, “Attention mechanism, transformers, bert, and gpt: Tutorial
and survey,” 2020.

Attention Mechanism, Transformers, BERT, and GPT 57 / 57

https://www.gwern.net/GPT-3

