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Scatters in Two-Class Case

Assume we have two classes, {x (1)
i }n1i=1 and {x (2)

i }n2i=1, where n1 and n2 denote the sample

size of the first and second class, respectively, and x (j)
i denotes the i-th instance of the

j-th class.

If the data instances of the j-th class are projected onto a one-dimensional subspace

(vector u) by u⊤x (j)
i , the mean and the variance of the projected data are u⊤µj and

u⊤S ju, respectively, where µj and S j are the mean and covariance matrix (scatter) of the
j-th class.

The mean of the j-th class is:

Rd ∋ µj :=
1

nj

nj∑
i=1

x (j)
i . (1)
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Scatters in Two-Class Case

After projection onto the one-dimensional subspace, the distance between the means of
classes is:

R ∋ dB := (u⊤µ1 − u⊤µ2)
⊤(u⊤µ1 − u⊤µ2) = (µ1 − µ2)

⊤uu⊤(µ1 − µ2)

(a)
= tr

(
(µ1 − µ2)

⊤uu⊤(µ1 − µ2)
) (b)
= tr

(
u⊤(µ1 − µ2)(µ1 − µ2)

⊤u
)

(c)
= u⊤(µ1 − µ2)(µ1 − µ2)

⊤u
(d)
= u⊤SB u, (2)

where (a) is because (µ1 − µ2)
⊤uu⊤(µ1 − µ2) is a scalar, (b) is because of the cyclic

property of trace, (c) is because u⊤(µ1 −µ2)(µ1 −µ2)
⊤u is a scalar, and (d) is because

we define:

Rd×d ∋ SB := (µ1 − µ2)(µ1 − µ2)
⊤, (3)

as the between-scatter of classes.

The Eq. (2) can also be interpreted in this way: the dB is the variance of projection of the
class means or the squared length of reconstruction of the class means.
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Scatters in Two-Class Case

We saw that the variance of projection is u⊤S ju for the j-th class. If we add up the
variances of projections of the two classes, we have:

R ∋ dW := u⊤S1u + u⊤S2u = u⊤(S1 + S2) u
(a)
= u⊤SW u, (4)

where:

Rd×d ∋ SW := S1 + S2, (5)

is the within-scatter of classes.

The dW is the summation of projection variance of class instances or the summation of
the reconstruction length of class instances.
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Scatters in Multi-Class Case: Variant 1

Assume {x (j)
i }nji=1 are the instances of the j-th class where we have multiple classes. In

this case, the between-scatter is defined as:

Rd×d ∋ SB :=
c∑

j=1

(µj − µ)(µj − µ)⊤, (6)

where c is the number of classes and:

Rd ∋ µ :=
1∑c

k=1 nk

c∑
j=1

nj µj =
1

n

n∑
i=1

x i , (7)

is the weighted mean of means of classes or the total mean of data.

It is noteworthy that some researches define the between-scatter in a weighted way:

Rd×d ∋ SB :=
c∑

j=1

nj (µj − µ)(µj − µ)⊤. (8)
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Scatters in Multi-Class Case: Variant 1

If we extend the Eq. (5) to c number of classes, the within-scatter is defined as:

Rd×d ∋ SW :=
c∑

j=1

S j (9)

=
c∑

j=1

nj∑
i=1

(x (j)
i − µj )(x

(j)
i − µj )

⊤, (10)

where nj is the sample size of the j-th class.

In this case, the dB and dW are:

R ∋ dB := u⊤SB u, (11)

R ∋ dW := u⊤SW u, (12)

where SB and SW are Eqs. (6) and (10).
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Scatters in Multi-Class Case: Variant 2

There is another variant for multi-class case in FDA. In this variant, the within-scatter is
the same as Eq. (10). The between-scatter is, however, different.

The total-scatter is defined as the covariance matrix of the whole data, regardless of
classes [1]:

Rd×d ∋ ST :=
1

n

n∑
i=1

(x i − µ)(x i − µ)⊤, (13)

where the total mean µ is the Eq. (7). We can also use the scaled total-scatter by
dropping the 1/n factor.

On the other hand, the total scatter is equal to the summation of the within- and
between-scatters:

ST = SW + SB . (14)

Therefore, the between-scatter, in this variant, is obtained as:

SB := ST − SW . (15)
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Fisher Subspace: Variant 1
In FDA, we want to maximize the projection variance (scatter) of means of classes and
minimize the projection variance (scatter) of class instances. In other words, we want to
maximize dB and minimize dW . The reason is that after projection, we want the within
scatter of every class to be small and the between scatter of classes to be large; therefore,
the instances of every class get close to one another and the classes get far from each
other.

The two mentioned optimization problems are:

maximize
u

dB(u), (16)

minimize
u

dW (u). (17)

We can merge these two optimization problems as a regularized optimization problem:

maximize
u

dB(u)− α dW (u), (18)

where α > 0 is the regularization parameter.

Another way of merging Eqs. (16) and (17) is:

maximize
u

f (u) :=
dB(u)
dW (u)

=
u⊤SB u
u⊤SW u

, (19)

where f (u) ∈ R is referred to as the Fisher criterion [2].
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Fisher Subspace: Variant 1
The Fisher criterion is a generalized Rayleigh-Ritz quotient (recall preliminaries):

f (u) = R(SB ,SW ; u). (20)

According to the preliminaries slides, the optimization in Eq. (19) is equivalent to:

maximize
u

u⊤SB u

subject to u⊤SW u = 1.
(21)

The Lagrangian [3] is:

L = w⊤SB w − λ(w⊤SW w − 1),

where λ is the Lagrange multiplier. Equating the derivative of L to zero gives:

Rd ∋
∂L
∂u

= 2SB u − 2λSW u set
= 0

=⇒ 2SB u = 2λSW u =⇒ SB u = λSW u, (22)

which is a generalized eigenvalue problem (SB ,SW ) according to [4]. The u is the
eigenvector with the largest eigenvalue (because the optimization is maximization) and
the λ is the corresponding eigenvalue.

The u is referred to as the Fisher direction or Fisher axis.
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Fisher Subspace: Variant 1

One possible solution to the generalized eigenvalue problem (SB ,SW ) is [4]:

SB u = λSW u =⇒ S−1
W SB u = λ u

=⇒ u = eig(S−1
W SB), (23)

where eig(.) denotes the eigenvector of the matrix with the largest eigenvalue. Although
the solution in Eq. (23) is a little dirty [4] because Sw might be singular and not
invertible, but this solution is very common for FDA.

In some researches, the diagonal of SW is strengthened slightly to make it full rank and
invertible [4]:

u = eig((SW + εI )−1SB), (24)

where ε is a very small positive number, large enough to make SW full rank.
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Projection and Reconstruction in FDA

The projection, projection of out-of-sample, reconstruction, and reconstruction of
out-of-sample in SPCA are:

x̃ = U⊤x , (25)

x̃ t = U⊤x t , (26)

x̂ = UU⊤x = Ux̃ , (27)

x̂ t = UU⊤x t = Ux̃ t , (28)

respectively.

In FDA, there is no need to center the data, in contrast to PCA.
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Fisher Subspace: Variant 2

Another way to find the FDA direction is to consider another version of Fisher criterion.
According to Eq. (15) for SB , the Fisher criterion becomes [1]:

f (u) =
u⊤SB u
u⊤SW u

(15)
=

u⊤(ST − SW ) u
u⊤SW u

=
u⊤ST u − u⊤SW u

u⊤SW u
=

u⊤ST u
u⊤SW u

− 1. (29)

The −1 is a constant and is dropped in the optimization; therefore:

maximize
u

u⊤ST u

subject to u⊤SW u = 1,
(30)

whose solution is similarly obtained as:

ST u = λSW u, (31)

which is a generalized eigenvalue problem (ST ,SW ) according to [4].
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Multi-dimensional
Subspace
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Multi-dimensional Subspace

In case the Fisher subspace is the span of several Fisher directions, {u j}pj=1 where

u j ∈ Rd , the dB and dW are defined as:

R ∋ dB := tr(U⊤SB U), (32)

R ∋ dW := tr(U⊤SW U), (33)

where Rd×p ∋ U = [u1, . . . , up ]. In this case, maximizing the Fisher criterion is:

maximize
U

f (U) :=
dB(U)

dW (U)
=

tr(U⊤SB U)

tr(U⊤SW U)
. (34)

The Fisher criterion f (U) is a generalized Rayleigh-Ritz quotient (see preliminaries).
According to preliminaries, the optimization in Eq. (34) is approximately equivalent to:

maximize
U

tr(U⊤SB U)

subject to U⊤SW U = I .
(35)

Note that it is exactly true for one projection vector u but it approximately holds for the
projection matrix U having multiple projection directions.
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Multi-dimensional Subspace

The Lagrangian [3] is:

L = tr(U⊤SB U)− tr
(
Λ⊤(U⊤SW U − I )

)
,

where Λ ∈ Rd×d is a diagonal matrix whose diagonal entries are the Lagrange multipliers.
Equating the derivative of L to zero gives:

Rd×p ∋
∂L
∂U

= 2SB U − 2SW UΛ
set
= 0

=⇒ 2SB U = 2SW UΛ =⇒ SB U = SW UΛ, (36)

which is a generalized eigenvalue problem (SB ,SW ) according to [4]. The columns of U
are the eigenvectors sorted by largest to smallest eigenvalues (because the optimization is
maximization) and the diagonal entries of Λ are the corresponding eigenvalues.

The columns of U are referred to as the Fisher directions or Fisher axes.
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Multi-dimensional Subspace

One possible solution to the generalized eigenvalue problem (SB ,SW ) is [4]:

SB U = SW UΛ =⇒ S−1
W SB U = UΛ

=⇒ U = eig(S−1
W SB), (37)

where eig(.) denotes the eigenvectors of the matrix stacked column-wise. Again, we can
have [4]:

U = eig((SW + εI )−1SB). (38)
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Projection and Reconstruction in FDA

The projection, projection of out-of-sample, reconstruction, and reconstruction of
out-of-sample in SPCA are:

X̃ = U⊤X , (39)

X̃ t = U⊤X t , (40)

X̂ = UU⊤X = UX̃ , (41)

X̂ t = UU⊤X t = UX̃ t , (42)

respectively.

In FDA, there is no need to center the data, in contrast to PCA.
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Discussion on
Dimensionality of the
Fisher Subspace
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Discussion on Dimensionality of the Fisher Subspace
In general, the rank of a covariance (scatter) matrix over the d-dimensional data with
sample size n is at most min(d , n − 1). The d is because the covariance matrix is a d × d
matrix and the n is because we iterate over n data instances for calculating the covariance
matrix. The −1 is because of subtracting the mean in calculation of the covariance matrix.

For clarification, assume we only have one instance which becomes zero after removing
the mean. This makes the covariance matrix a zero matrix.

According to Eq. (10), the rank of the SW is at most min(d , n − 1) because all the
instances of all the classes are considered. Hence, the rank of SW is also at most
min(d , n − 1). According to Eq. (6), the rank of the SB is at most min(d , c − 1) because
we have c iterations in its calculation.

In Eq. (37), we have S−1
W SB whose rank is:

rank(S−1
W SB) ≤ min

(
rank(S−1

W ), rank(SB)
)

≤ min
(
min(d , n − 1),min(d , c − 1)

)
= min(d , n − 1, c − 1)

(a)
= c − 1, (43)

where (a) is because we usually have c < d , n. Therefore, the rank of S−1
W SB is limited

because of the rank of SB which is at most c − 1.

According to Eq. (37), the c − 1 leading eigenvalues will be valid and the rest are zero or
very small. Therefore, the p, which is the dimensionality of the Fisher subspace, is at
most c − 1. The c − 1 leading eigenvectors are considered as the Fisher directions and the
rest of eigenvectors are invalid and ignored.
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Comparison of FDA
and PCA Directions
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Comparison of FDA and PCA Directions
FDA optimization:

maximize
U

tr(U⊤ST U)

subject to U⊤SW U = I .
(44)

PCA optimization: [5]:

maximize
U

tr(U⊤ST U)

subject to U⊤U = I .
(45)
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FDA
?
≡ LDA
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FDA
?≡ LDA

The FDA is also referred to as Linear Discriminant Analysis (LDA) and Fisher LDA
(FLDA).

Note that FDA is a manifold (subspace) learning method and LDA [6] is a classification
method. However, LDA can be seen as a metric learning method [6] and as metric
learning is a subspace learning method, there is a connection between FDA and LDA.

We know that FDA is a projection-based subspace learning method. Consider the
projection vector u. The projection of data x is:

x 7→ u⊤x , (46)

which can be done for all the data instances of every class. Thus, the mean and the
covariance matrix of the class are transformed as:

µ 7→ u⊤µ, (47)

Σ 7→ u⊤Σ u, (48)

respectively, because of characteristics of mean and variance.

According to Eq. (19), the Fisher criterion is the ratio of the between-class variance, σ2
b,

and within-class variance, σ2
w :

f :=
σ2
b

σ2
w

=
(u⊤µ2 − u⊤µ1)

2

u⊤Σ2 u + u⊤Σ1 u
=

(
u⊤(µ2 − µ1)

)2
u⊤(Σ2 +Σ1) u

, (49)

where µ1 and µ2 are the means of the two classes and Σ1 and Σ2 are the covariances of
the two classes.

Fisher Discriminant Analysis 24 / 44



FDA
?≡ LDA

We had:

f :=
σ2
b

σ2
w

=
(u⊤µ2 − u⊤µ1)

2

u⊤Σ2 u + u⊤Σ1 u
=

(
u⊤(µ2 − µ1)

)2
u⊤(Σ2 +Σ1) u

.

The FDA maximizes the Fisher criterion:

maximize
u

(
u⊤(µ2 − µ1)

)2
u⊤(Σ2 +Σ1) u

, (50)

which can be restated as:

maximize
u

(
u⊤(µ2 − µ1)

)2
,

subject to u⊤(Σ2 +Σ1) u = 1,
(51)

according to Rayleigh-Ritz quotient method [7].

The Lagrangian [3] is:

L =
(
u⊤(µ2 − µ1)

)2 − λ
(
u⊤(Σ2 +Σ1) u − 1

)
,

where λ is the Lagrange multiplier.
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FDA
?≡ LDA

Equating the derivative of L to zero gives:

∂L
∂u

= 2 (µ2 − µ1)(µ2 − µ1)
⊤u − 2λ (Σ2 +Σ1) u

set
= 0

=⇒ (µ2 − µ1)(µ2 − µ1)
⊤u = λ (Σ2 +Σ1) u,

which is a generalized eigenvalue problem
(
(µ2 − µ1)(µ2 − µ1)

⊤, (Σ2 +Σ1)
)
according

to [4].
The projection vector is the eigenvector of (Σ2 +Σ1)−1(µ2 − µ1)(µ2 − µ1)

⊤; therefore,
we can say:

u ∝ (Σ2 +Σ1)
−1(µ2 − µ1)(µ2 − µ1)

⊤. (52)

On the other hand, in LDA, the decision function is [6]:

2
(
Σ−1(µ2 − µ1)

)⊤x + µ⊤
1 Σ−1µ1 − µ⊤

2 Σ−1µ2 + 2 ln(
π1

π2
) = 0, (53)

where π1 and π2 are the prior distributions of the two classes. Moreover, in LDA, the
covariance matrices are assumed to be equal [6]: Σ1 = Σ2 = Σ. Therefore, in LDA, the
Eq. (52) becomes [6]:

u ∝ (2Σ)−1(µ2 − µ1)(µ2 − µ1)
⊤

∝ Σ−1(µ2 − µ1)(µ2 − µ1)
⊤. (54)

According to Eq. (46), we have:

u⊤x ∝
(
Σ−1(µ2 − µ1)(µ2 − µ1)

⊤)⊤x . (55)

Fisher Discriminant Analysis 26 / 44



FDA
?≡ LDA

Comparing Eq. (53) and Eq. (55):

2
(
Σ−1(µ2 − µ1)

)⊤x + µ⊤
1 Σ−1µ1 − µ⊤

2 Σ−1µ2 + 2 ln(
π1

π2
) = 0,

u⊤x ∝
(
Σ−1(µ2 − µ1)(µ2 − µ1)

⊤)⊤x ,

shows that LDA and FDA are equivalent up to a scaling factor
µ⊤

1 Σ−1µ1 − µ⊤
2 Σ−1µ2 + 2π1/π2.

Note that this term is multiplied as an exponential factor before taking logarithm to obtain
Eq. (53), so this term is a scaling factor (see the LDA lecture or [6] for more details).

It should be noted that in manifold (subspace) learning, the scale does not matter
because all the distances can scale similarly in the subspace, without impacting the
relative distances of points.

Hence, we can say that LDA and FDA are equivalent:

LDA ≡ FDA. (56)

Therefore, the two subspaces of FDA and LDA are the same subspace.

In other words, FDA followed by the use of Euclidean distance for classification in the
subspace is equivalent to LDA. This sheds light on why LDA and FDA are used
interchangeably in the literature.

Note that LDA assumes one (and not several) Gaussian for every class [6] and so does the
FDA because they are equivalent. That is why FDA faces problem for multi-modal data
[8].
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Eigenfaces vs.
Fisherfaces
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Eigenfaces vs. Fisherfaces

eigenfaces (1991) [9, 10] and Fisherfaces (1997) [11, 12, 13]
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Kernel Fisher
Discriminant Analysis
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Kernel Fisher Discriminant Analysis
The Eq. (3) in the feature space is:

Rt×t ∋ Φ(SB) :=
(
ϕ(µ1)− ϕ(µ2)

)(
ϕ(µ1)− ϕ(µ2)

)⊤
, (57)

where the mean of the j-th class in the feature space is:

Rt ∋ ϕ(µj ) :=
1

nj

nj∑
i=1

ϕ(x (j)
i ). (58)

According to the representation theory [14], any solution (direction) ϕ(u) ∈ H must lie
in the span of “all” the training vectors mapped to H, i.e.,
Φ(X ) = [ϕ(x1), . . . ,ϕ(xn)] ∈ Rt×n (usually t ≫ d). Note that H denotes the Hilbert
space (feature space). Therefore, we can state that:

Rt ∋ ϕ(u) =
n∑

i=1

θi ϕ(x i ) = Φ(X )θ, (59)

where Rn ∋ θ := [θ1, . . . , θn]⊤ is the unknown vector of coefficients, and ϕ(u) ∈ Rt is the
pulled Fisher direction to the feature space.

The pulled directions can be put together in Rt×p ∋ Φ(U) := [ϕ(u1), . . . ,ϕ(up)]:

Rt×p ∋ Φ(U) = Φ(X )Θ, (60)

where Θ := [θ1, . . . ,θp ] ∈ Rn×p .
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Kernel Fisher Discriminant Analysis

The dB in the feature space is:

R ∋ dB := ϕ(u)⊤Φ(SB)ϕ(u) (61)

(a)
= θ⊤Φ(X )⊤

(
ϕ(µ1)− ϕ(µ2)

)(
ϕ(µ1)− ϕ(µ2)

)⊤
Φ(X )θ, (62)

where (a) is because of Eqs. (57). and (59).

For the j-th class (here j ∈ {1, 2}), we have:

θ⊤Φ(X )⊤ϕ(µj )
(59)
=

n∑
i=1

θi ϕ(x i )
⊤ϕ(µj )

(58)
=

1

nj

n∑
i=1

nj∑
k=1

θi ϕ(x i )
⊤ϕ(x (j)

k )

=
1

nj

n∑
i=1

nj∑
k=1

θi k(x i , x
(j)
k ) = θ⊤mj , (63)

where mj ∈ Rn whose i-th entry is:

mj (i) :=
1

nj

nj∑
k=1

k(x i , x
(j)
k ). (64)
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Kernel Fisher Discriminant Analysis
We had:

dB = θ⊤Φ(X )⊤
(
ϕ(µ1)− ϕ(µ2)

)(
ϕ(µ1)− ϕ(µ2)

)⊤
Φ(X )θ,

θ⊤Φ(X )⊤ϕ(µj ) =
1

nj

n∑
i=1

nj∑
k=1

θi k(x i , x
(j)
k ) = θ⊤mj ,

mj (i) :=
1

nj

nj∑
k=1

k(x i , x
(j)
k ).

Hence, Eq. (62) becomes:

dB
(63)
= θ⊤(m1 − m2)(m1 − m2)

⊤θ = θ⊤Mθ, (65)

where:

Rn×n ∋ M := (m1 − m2)(m1 − m2)
⊤, (66)

is the between-scatter in kernel FDA. Hence, the Eq. (62) becomes:

dB = ϕ(u)⊤Φ(SB)ϕ(u) = θ⊤Mθ. (67)
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Kernel Fisher Discriminant Analysis
The Eq. (10) in the feature space is:

Rt×t ∋ Φ(SW ) :=
c∑

j=1

nj∑
i=1

(
ϕ(x (j)

i )− ϕ(µj )
)(
ϕ(x (j)

i )− ϕ(µj )
)⊤

. (68)

The dW in the feature space is:

R ∋ dW := ϕ(u)⊤Φ(SW )ϕ(u)

(a)
=

( n∑
ℓ=1

θℓ ϕ(xℓ)
⊤
)( c∑

j=1

nj∑
i=1

(
ϕ(x (j)

i )− ϕ(µj )
)(
ϕ(x (j)

i )− ϕ(µj )
)⊤)( n∑

k=1

θk ϕ(xk )
)

=
c∑

j=1

n∑
ℓ=1

nj∑
i=1

n∑
k=1

(
θℓ ϕ(xℓ)

⊤(
ϕ(x (j)

i )− ϕ(µj )
)(
ϕ(x (j)

i )− ϕ(µj )
)⊤

θk ϕ(xk )
)

(58)
=

c∑
j=1

n∑
ℓ=1

nj∑
i=1

n∑
k=1

(
θℓ ϕ(xℓ)

⊤(
ϕ(x (j)

i )−
1

nj

nj∑
e=1

ϕ(x (j)
e )

)
(
ϕ(x (j)

i )−
1

nj

nj∑
z=1

ϕ(x (j)
z )

)⊤
θk ϕ(xk )

)
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Kernel Fisher Discriminant Analysis

=
c∑

j=1

n∑
ℓ=1

nj∑
i=1

n∑
k=1

(
θℓ k(xℓ, x

(j)
i )−

1

nj

nj∑
e=1

θℓ k(xℓ, x
(j)
e )

)
(
θk k(x

(j)
i , xk )−

1

nj

nj∑
z=1

θk k(x
(j)
z , xk )

)
(b)
=

c∑
j=1

n∑
ℓ=1

nj∑
i=1

n∑
k=1

(
θℓ k(xℓ, x

(j)
i )−

1

nj

nj∑
e=1

θℓ k(xℓ, x
(j)
e )

)(
θk k(xk , x

(j)
i )−

1

nj

nj∑
z=1

θk k(xk , x
(j)
z )

)

=
c∑

j=1

n∑
ℓ=1

nj∑
i=1

n∑
k=1

(
θℓ θk k(xℓ, x

(j)
i ) k(xk , x

(j)
i )−

2 θℓ θk

nj

nj∑
z=1

k(xℓ, x
(j)
i ) k(xk , x

(j)
z )

+
θℓ θk

n2j

nj∑
e=1

nj∑
z=1

k(xℓ, x
(j)
e ) k(xk , x

(j)
z )

)

=
c∑

j=1

n∑
ℓ=1

nj∑
i=1

n∑
k=1

(
θℓ θk k(xℓ, x

(j)
i ) k(xk , x

(j)
i )−

θℓ θk

nj

nj∑
z=1

k(xℓ, x
(j)
i ) k(xk , x

(j)
z )

)
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=
c∑

j=1

n∑
ℓ=1

nj∑
i=1

n∑
k=1

(
θℓ θk k(xℓ, x

(j)
i ) k(xk , x

(j)
i )−

θℓ θk

nj

nj∑
z=1

k(xℓ, x
(j)
i ) k(xk , x

(j)
z )

)

=
c∑

j=1

( n∑
ℓ=1

nj∑
i=1

n∑
k=1

(
θℓ θk k(xℓ, x

(j)
i ) k(xk , x

(j)
i )

)

−
n∑

ℓ=1

nj∑
i=1

n∑
k=1

( θℓ θk

nj

nj∑
z=1

k(xℓ, x
(j)
i ) k(xk , x

(j)
z )

))
(c)
=

c∑
j=1

(
θ⊤K jK⊤

j θ − θ⊤K j
1

nj
11⊤K⊤

j θ
)
=

c∑
j=1

θ⊤K j

(
I −

1

nj
11⊤

)
K⊤

j θ

(d)
=

c∑
j=1

θ⊤K jH jK⊤
j θ = θ⊤

( c∑
j=1

K jH jK⊤
j

)
θ,

where (a) is because of Eqs. (68) and (59), (b) is because k(x1, x2) = k(x2, x1) ∈ R, and (c) is
because K j ∈ Rn×nj is the kernel matrix of the whole training data and the training data of the
j-th class. The (a, b)-th element of K j is:

K j (a, b) := k(xa, x
(j)
b ). (69)
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The (d) is because:

Rnj×nj ∋ H j := I −
1

nj
11⊤, (70)

is the centering matrix.
We define:

Rn×n ∋ N :=
c∑

j=1

K jH jK⊤
j , (71)

as the within-scatter in kernel FDA. Hence, the dW becomes:

dW = ϕ(u)⊤Φ(SW )ϕ(u) = θ⊤Nθ. (72)

The kernel Fisher criterion is:

f (θ) :=
dB(θ)

dW (θ)
=

ϕ(u)⊤Φ(SB)ϕ(u)
ϕ(u)⊤Φ(SW )ϕ(u)

=
θ⊤Mθ

θ⊤Nθ
, (73)

where the θ ∈ Rn is the kernel Fisher direction.
Similar to the solution of Eq. (19), the solution to maximization of Eq. (73) is:

Mθ = λNθ, (74)

which is a generalized eigenvalue problem (M,N) according to [4]. The θ is the
eigenvector with the largest eigenvalue (because the optimization is maximization) and
the λ is the corresponding eigenvalue. The θ is the kernel Fisher direction or kernel
Fisher axis.
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Again, one possible solution to the generalized eigenvalue problem (M,N) is [4]:

θ = eig(N−1M), (75)

or [4]:

θ = eig((N + εI )−1M), (76)

where eig(.) denotes the eigenvector of the matrix with the largest eigenvalue.

The projection and reconstruction of the training data point x i and the out-of-sample
data point x t are:

R ∋ ϕ(x̃ i ) = ϕ(u)⊤ϕ(x i )
(59)
= θ⊤Φ(X )⊤ϕ(x i ) = θ⊤k(X , x i ), (77)

Rt ∋ ϕ(x̂ i ) = ϕ(u)ϕ(u)⊤ϕ(x i )
(59)
= Φ(X )θθ⊤k(X , x i ), (78)

R ∋ ϕ(x̃ t) = θ⊤k(X , x t), (79)

Rt ∋ ϕ(x̂ t) = Φ(X )θθ⊤k(X , x t). (80)

However, in reconstruction expressions, the Φ(X ) is not necessarily available; therefore, in
kernel FDA, similar to kernel PCA [5], reconstruction cannot be done.

For the whole training and out-of-sample data, the projections are:

R1×n ∋ Φ(X̃ ) = θ⊤K(X ,X ), (81)

R1×nt ∋ Φ(X̃ t) = θ⊤K(X ,X t). (82)
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In multi-dimensional kernel Fisher subspace, the within- and between-scatters are the
same but the Fisher criterion is different. According to Eq. (60), the dB and dW are:

dB = tr
(
ϕ(U)⊤Φ(SB)ϕ(U)

)
= tr(Θ⊤MΘ), (83)

dW = tr
(
ϕ(U)⊤Φ(SW )ϕ(U)

)
= tr(Θ⊤NΘ), (84)

where Rn×p ∋ Θ = [θ1, . . . ,θp ] and M ∈ Rn×n and N ∈ Rn×n are the between- and
within-scatters, respectively, determined for either two-class or multi-class case.

The Fisher criterion becomes:

f (Θ) :=
dB(Θ)

dW (Θ)
=

tr
(
ϕ(U)⊤Φ(SB)ϕ(U)

)
tr
(
ϕ(U)⊤Φ(SW )ϕ(U)

) =
tr(Θ⊤MΘ)

tr(Θ⊤NΘ)
, (85)

where the columns of Θ are the kernel Fisher directions.

Similar to Eq. (34), the solution to maximization of this criterion is:

MΘ = NΘΛ, (86)

which is the generalized eigenvalue problem (M,N) according to [4]. The columns of Θ
are the eigenvectors sorted from the largest to smallest eigenvalues (because the
optimization is maximization) and the diagonal entries of Λ are the corresponding
eigenvalues.
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As mentioned before, in kernel FDA, we do not have reconstruction.

The projection of the training data point x i and the out-of-sample data point x t are:

Rp ∋ ϕ(x̃ i ) = Φ(U)⊤ϕ(x i )
(60)
= Θ⊤Φ(X )⊤ϕ(x i ) = Θ⊤k(X , x i ), (87)

Rp ∋ ϕ(x̃ t) = Θ⊤k(X , x t). (88)

For the whole training and out-of-sample data, the projections are:

Rp×n ∋ Φ(X̃ ) = Θ⊤K(X ,X ), (89)

Rp×nt ∋ Φ(X̃ t) = Θ⊤K(X ,X t). (90)

Fisher Discriminant Analysis 40 / 44



Acknowledgment

Some slides are based on our tutorial paper: ”Fisher and kernel Fisher discriminant
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Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics and Ptof. Hoda Mohammadzade at Sharif University
of Technology, Department of Electrical Engineering.

The code of FDA in my GitHub page (in Python language):
https://github.com/bghojogh/Fisher-Discriminant-Analysis

FDA/LDA in sklearn: https://scikit-learn.org/stable/modules/generated/
sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
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