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Logistic Regression

@ Logistic regression is popular in bio-statistics and bio-informatics.
@ Let x € RY be data and y € R be class label. Baye's rule:
_ Pixly)P(y)

P(y|x) = TP (1)

where P(y|x) and P(x|y) are the posterior and likelihood, respectively, and P(x) and P(y)
are the priors.

@ In contrast to Linear Discriminant Analysis (LDA), logistic regression works on the
posterior P(y|x) directly rather than working on likelihood P(x|y) and prior P(y).
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Logistic Regression

@ Logistic regression is a binary classifier where it assigns probability between zero and one
for belonging to one of the classes.

@ The logistic function, used in logistic regression, was initially proposed in 1845 for
modeling the population growth [1]. It was further improved in the 20th century [2]. See
[3] for the history of logistic regression.

@ It considers the classification problem as a regression problem where it regresses (predicts)
the probability of belonging to a class. It first considers a linear regression 31 x + Bo-
However, in order to not have the bias, it assumes that x is d + 1 dimensional with an
additional element of 1 for bias, i.e., x = [x1,...,X4,1] . The @ € R9t! is the learnable
parameter of the logistic regression model. As a result, the linear regression becomes 37 x.

@ However, there is no bound on this regression while logistic regression desires the output
to be in the range [0, 1] to behave like a probability. Therefore, Logistic regression models
the posterior using a logistic function, also called the sigmoid function, to make this
regression between zero and one.
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Logistic Regression

@ Assume we have two classes y € {0,1}.

@ Logistic regression models the posterior using a logistic function, also called the sigmoid

function:
By —1x == L )
y=1UX=x) =5
1
(v = 01X = x) (y=1X=x) = 5, 3)

where 3 € R? is the learnable parameter of the logistic regression model.
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Logistic Regression as a Neural Network

@ Logistic regression can be seen as a neural network with one neuron where the activation
function is the nonlinear sigmoid (logistic) function.
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Logistic Regression
@ Consider n data points {(x;,y;)}7_; in the dataset. Assuming that they are independent
and identically distributed (i.i.d), the posterior over all data points is:
n
PuIX) =TT (PUi = 1X =)Iy; = 1) +P(yi = 01X = x)I(yi =0)),  (4)

i=1

where I(.) is the indicator function which is one if its condition is satisfied and is zero
otherwise.

@ As the labels are either zero or one, i.e., y; € {0,1}, this equation can be restated as:
i 1—y;
P(y|X) = H (B(yi = 11X = x))" (B(y; = 01X = x;))" ™" (5)

@ Substituting Egs. (2) and (3) in this equation gives:

n BT x; 1
e A 1—vy;
P(y[X) =] Vi Y 6
1X) i:1(1+e5Txi) (l-l-eﬁ—rxi) ©)
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Logistic Regression

@ The log posterior is:

ﬁTxl 1
UB) =P(yIX = x) = logH Trenw)

)1*}4
1+eBTxi

n

i 1 1—-y;
log (1 BT )7 loe (15 )

i=1
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yiBT x; — log(1 + &P "‘))
1
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Logistic Regression

@ The log posterior is:
n T )
1B =" (viBTx; — log(1+ ).

i=1

@ Newton's method can be used to find the optimum 3. The first derivative, or the
gradient, it:

HB) T 1 Ty BT x;
8 - > (yi"f - H—T ") Z (vi— ﬁ)x (7)

i=1

Its transpose is:

HPB)
B,BT _Z(y/ 1te ﬁT ) X1

i=1
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Logistic Regression

@ The second derivative is:

(B _

98087

@ We define:

Therefore:

o 0B), D [~ B xi .
_%(aﬁ”_%(g(” 1+eBTXf)X’)

BXI T

Z( o8 Ty e )

=1

eﬁT"'

PP =

n

o%(B) 7]
505" ——;(aﬁ( (xil8)) )x;
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Logistic Regression

@ We have:
0 o, eB'xi
— (P(x: A G
55 B0a1B) = o2 ()
1 T, T, T, T,
= Gy (& ) = )
BT x; BT x;
e T T e !
= (1+4ef ¥—eP Xi)xj= ————x;
(14 eBTxi)2 ( ) (14 eBTxi)2
B xi 1 (8)

(1P ™) (1+66Txi)x,- = P(x;|8) (1 — P(x]8)) x;

@ Substituting it in Eq. (9) gives the second derivative, i.e., the Hessian matrix:

220(B) "
25067 =~ ; (P(xilB) (1 = P(xilB)) x; ) x/ - (10)
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Logistic Regression

@ It is possible to write the Newton's method in matrix form. We define:

RHDXN 5 x . 1 1 ... 1
’ X1 X2 ... Xp|’

Y S W = diag (B(xi|8) (1~ B(xi(8)) ).

RS y:=[y1,...,ya]",

BT x1 B xn
R'Sp=[— o\, —— T
14+ eB x1 1+eP ' xn
@ The Egs. (7) and (10) can be restated as:
oU(B)
RE+D 5 22520 — x(y — 11
> % =X =p) (1)
2
R <) 5 TUB) eyt (12)
BB’
@ Using Newton's method for maximization of the log posterior is:
e — gin) 4 (ZUB) -1 9UB)
0BoB " oB
U =) — (XxwXx )" X(y - p), (13)

where 7 is the iteration index. It is repeated until convergence of 3.
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Logistic Regression
@ In the test phase, the class of a point x is determined as:

o B x
y:{ 1 if £ > 05, (14)
0 Otherwise.
@ Comparison to LDA:
> Logistic regression estimates (d + 1) parameters in 3, but LDA estimates many
more parameters:
* prior of each class: 1. We have two classes: 2 x 1 = 2.
* mean of each class: d. We have two classes: 2 x d = 2d.
* covariance matrix of each class: d(d + 1)/2. We have two classes:
2x(d(d+1)/2) =d(d +1).
* so, in total: 2 +2d 4+ d(d +1) = d*> +2d + 2.
> LDA assumes the distribution of each class is Gaussian which may not be true.
However, logistic regression does not assume anything about the distribution of
data.
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