
Principal Component Analysis

Statistical Machine Learning (ENGG*6600*08)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Fall 2023

Principal Component Analysis 1 / 53

Projection and
Reconstruction in PCA

Principal Component Analysis 2 / 53

Projection and Reconstruction in PCA

If there exist n training data points, i.e., {x i}ni=1, the projection of a training data point x
is:

Rp ∋ x̃ := U⊤x̆ , (1)

where:

Rd ∋ x̆ := x − µx , (2)

is the centered data point and:

Rd ∋ µx :=
1

n

n∑
i=1

x i , (3)

is the mean of training data points.

The reconstruction of a training data point x after projection onto the PCA subspace is:

Rd ∋ x̂ := UU⊤x̆ + µx = Ux̃ + µx , (4)

where the mean is added back because it was removed before projection.

Principal Component Analysis 3 / 53

Projection and Reconstruction in PCA

In PCA, all the data points should be centered, i.e., the mean should be removed first.
The reason is shown in this figure.

In some applications, centering the data does not make sense. For example, in natural
language processing, the data are text and centering the data makes some negative
measures which is non-sense for text. Therefore, data is not sometimes centered and PCA
is applied on the non-centered data. This method is called Latent Semantic Indexing
(LSI) or Latent Semantic Analysis (LSA) [1].

Principal Component Analysis 4 / 53

Projection and Reconstruction in PCA

If we stack the n data points column-wise in a matrix X = [x1, . . . , xn] ∈ Rd×n, we first
center them:

Rd×n ∋ X̆ := XH = X − µx , (5)

where X̆ = [x̆1, . . . , x̆n] = [x1 − µx , . . . , xn − µx] is the centered data and:

Rn×n ∋ H := I − (1/n)11⊤, (6)

is the centering matrix.

The projection and reconstruction, Eqs. (1) and (4), for the whole training data are:

Rp×n ∋ X̃ := U⊤X̆ , (7)

Rd×n ∋ X̂ := UU⊤X̆ + µx = UX̃ + µx , (8)

where X̃ = [x̃1, . . . , x̃n] and X̂ = [x̂1, . . . , x̂n] are the projected data onto PCA subspace
and the reconstructed data, respectively.

Principal Component Analysis 5 / 53

Projection and Reconstruction in PCA
We can also project a new data point onto the PCA subspace for X where the new data
point is not a column of X . In other words, the new data point has not had impact in
constructing the PCA subspace. This new data point is also referred to as “test data
point” or “out-of-sample data” in the literature. The Eq. (7) was for projection of X onto
its PCA subspace. If x t denotes an out-of-sample data point, its projection onto the PCA
subspace (x̃ t) and its reconstruction (x̂ t) are:

Rp ∋ x̃ t = U⊤x̆ t , (9)

Rd ∋ x̂ t = UU⊤x̆ t + µx = Ux̃ t + µx , (10)

where:

Rd ∋ x̆ t := x t − µx , (11)

is the centered out-of-sample data point which is centered using the mean of training
data. Note that for centering the out-of-sample data point(s), we should use the mean of
the training data and not the out-of-sample data.
If we consider the nt out-of-sample data points, Rd×nt ∋ X t = [x t,1, . . . , x t,nt], all
together, the projection and reconstruction of them are:

Rp×nt ∋ X̃ t = U⊤X̆ t , (12)

Rd×nt ∋ X̂ t = UU⊤X̆ t + µx = UX̃ t + µx , (13)

respectively, where:

Rd×nt ∋ X̆ t := X t − µx . (14)

Principal Component Analysis 6 / 53

PCA Using
Eigen-Decomposition

Principal Component Analysis 7 / 53

Projection Onto One Direction

In Eq. (4), if p = 1, we are projecting x onto only one vector u and reconstruct it. If we
ignore adding the mean back, we have:

x̂ = uu⊤x̆ .

The squared length (squared ℓ2-norm) of this reconstructed vector is:

||x̂ ||22 = ||uu⊤x̆ ||22 = (uu⊤x̆)⊤(uu⊤x̆)

= x̆⊤u u⊤u︸ ︷︷ ︸
1

u⊤x̆
(a)
= x̆⊤u u⊤x̆

(b)
= u⊤x̆ x̆⊤u, (15)

where (a) is because u is a unit (normal) vector, i.e., u⊤u = ||u||22 = 1, and (b) is

because x̆⊤u = u⊤x̆ ∈ R.
Suppose we have n data points {x i}ni=1 where {x̆ i}ni=1 are the centered data. The
summation of the squared lengths of their projections {x̂ i}ni=1 is:

n∑
i=1

||x̂ i ||22
(15)
=

n∑
i=1

u⊤x̆ i x̆⊤
i u = u⊤

(n∑
i=1

x̆ i x̆⊤
i

)
u. (16)

Principal Component Analysis 8 / 53

Projection Onto One Direction

Considering X̆ = [x̆1, . . . , x̆n] ∈ Rd×n, we have:

Rd×d ∋ S :=
n∑

i=1

x̆ i x̆⊤
i = X̆ X̆⊤ (5)

= XHH⊤X⊤ = XHHX⊤ = XHX⊤, (17)

where S is called the “covariance matrix”. If the data were already centered, we would
have S = XX⊤.

Plugging Eq. (17) in Eq. (16) gives us:

n∑
i=1

||x̂ i ||22 = u⊤Su. (18)

Note that we can also say that u⊤Su is the variance of the projected data onto PCA
subspace. In other words, u⊤Su = Var(u⊤X̆). This makes sense because when some

non-random thing (here u) is multiplied to the random data (here X̆), it will have squared
(quadratic) effect on variance, and u⊤Su is quadratic in u.
Therefore, u⊤Su can be interpreted in two ways: (I) the squared length of reconstruction
and (II) the variance of projection.

Principal Component Analysis 9 / 53

Projection Onto One Direction
We want to find a projection direction u which maximizes the squared length of
reconstruction (or variance of projection):

maximize
u

u⊤Su,

subject to u⊤u = 1,
(19)

where the constraint ensures that the u is a unit (normal) vector as we assumed
beforehand.
Using Lagrange multiplier [2], we have:

L = u⊤Su − λ(u⊤u − 1),

Taking derivative of the Lagrangian and setting it to zero gives:

Rp ∋
∂L
∂u

= 2Su − 2λu set
= 0 =⇒ Su = λu. (20)

The Eq. (20) is the eigen-decomposition of S where u and λ are the leading eigenvector
and eigenvalue of S, respectively [3].
Note that the leading eigenvalue is the largest one. The reason of being leading is that we
are maximizing in the optimization problem.
As a conclusion, if projecting onto one PCA direction, the PCA direction u is the leading
eigenvector of the covariance matrix.
Note that the “PCA direction” is also called “principal direction” or “principal axis” in the
literature. The dimensions (features) of the projected data onto PCA subspace are called
“principal components”.

Principal Component Analysis 10 / 53

Projection Onto Span of Several Directions
In Eq. (4) or (8), if p > 1, we are projecting x̆ or X̆ onto PCA subspace with
dimensionality more than one and then reconstruct back. If we ignore adding the mean
back, we have:

X̂ = UU⊤X̆ .

It means that we project every column of X̆ , i.e., x̆ , onto a space spanned by the p
vectors {u1, . . . , up} each of which is d-dimensional. Therefore, the projected data are
p-dimensional and the reconstructed data are d-dimensional.

The squared length (squared Frobenius Norm) of this reconstructed matrix is:

||X̂ ||2F = ||UU⊤X̆ ||2F = tr
(
(UU⊤X̆)⊤(UU⊤X̆)

)
= tr(X̆⊤U U⊤U︸ ︷︷ ︸

I

U⊤X̆)
(a)
= tr(X̆⊤UU⊤X̆)

(b)
= tr(U⊤X̆ X̆⊤U),

where tr(.) denotes the trace of matrix, (a) is because U is an orthogonal matrix (its
columns are orthonormal), and (b) is because

tr(X̆⊤UU⊤X̆) = tr(X̆ X̆⊤UU⊤) = tr(U⊤X̆ X̆⊤U). According to Eq. (17), the

S = X̆ X̆⊤
is the covariance matrix; therefore:

||X̂ ||2F = tr(U⊤S U). (21)

Principal Component Analysis 11 / 53

Projection Onto Span of Several Directions
We want to find several projection directions {u1, . . . , up}, as columns of U ∈ Rd×p ,
which maximize the squared length of reconstruction (or variance of projection):

maximize
U

tr(U⊤S U),

subject to U⊤U = I ,
(22)

where the constraint ensures that the U is an orthogonal matrix as we assumed
beforehand.

Using Lagrange multiplier [2], we have:

L = tr(U⊤S U)− tr
(
Λ⊤(U⊤U − I)

)
,

where Λ ∈ Rp×p is a diagonal matrix diag([λ1, . . . , λp]⊤) including the Lagrange
multipliers.

Rd×p ∋
∂L
∂U

= 2SU − 2UΛ
set
= 0 =⇒ SU = UΛ. (23)

The Eq. (23) is the eigen-decomposition of S where the columns of U and the diagonal
of Λ are the eigenvectors and eigenvalues of S, respectively [3]. The eigenvectors and
eigenvalues are sorted from the leading (largest eigenvalue) to the trailing (smallest
eigenvalue) because we are maximizing in the optimization problem. As a conclusion, if
projecting onto the PCA subspace or span{u1, . . . , up}, the PCA directions {u1, . . . , up}
are the sorted eigenvectors of the covariance matrix of data X .

Principal Component Analysis 12 / 53

Truncating U

Principal Component Analysis 13 / 53

Truncating U
If rank(S) = d : we have p = d (we have d non-zero eigenvalues of S), so that
U ∈ Rd×d . It means that the dimensionality of the PCA subspace is d , equal to the
dimensionality of the original space. Why does this happen? That is because rank(S) = d
means that the data are spread wide enough in all dimensions of the original space up to a
possible rotation. Therefore, the dimensionality of PCA subspace is equal to the original
dimensionality; however, PCA might merely rotate the coordinate axes. In this case,
U ∈ Rd×d is a square orthogonal matrix so that Rd×d ∋ UU⊤ = UU−1 = I and
Rd×d ∋ U⊤U = U−1U = I because rank(U) = d , rank(UU⊤) = d , and
rank(U⊤U) = d . That is why in the literature, PCA is also referred to as coordinate
rotation.

If rank(S) < d and n > d : it means that we have enough data points but the data points
exist on a subspace and do not fill the original space wide enough in every direction. In
this case, U ∈ Rd×p is not square and rank(U) = p < d (we have p non-zero eigenvalues
of S). Therefore, Rd×d ∋ UU⊤ ̸= I and Rp×p ∋ U⊤U = I because rank(U) = p,
rank(UU⊤) = p < d , and rank(U⊤U) = p.

Principal Component Analysis 14 / 53

Truncating U
If rank(S) ≤ n − 1 < d : it means that we do not have enough data points to properly
represent the original space and the points have an “intrinsic dimensionality”. For
example, we have two three-dimensional points which are one a two-dimensional line
(subspace). So, similar to previous case, the data points exist on a subspace and do not
fill the original space wide enough in every direction. The discussions about U, UU⊤, and
U⊤U are similar to previous case.

Note that we might have rank(S) = d and thus U ∈ Rd×d but want to “truncate” the
matrix U to have U ∈ Rd×p . Truncating U means that we take a subset of best (leading)
eigenvectors rather than the whole d eigenvectors with non-zero eigenvalues. In this case,
again we have UU⊤ ̸= I and U⊤U = I . The intuition of truncating is this: the variance
of data might be noticeably smaller than another direction; in this case, we can only keep
the p < d top eigenvectors (PCA directions) and “ignore” the PCA directions with
smaller eigenvalues to have U ∈ Rd×p .

From all the above analyses, we conclude that as long as the columns of the matrix
U ∈ Rd×p are orthonormal, we always have U⊤U = I regardless of the value p. If the
orthogonal matrix U is not truncated and thus is a square matrix, we also have UU⊤ = I .

Principal Component Analysis 15 / 53

Reconstruction Error in
PCA

Principal Component Analysis 16 / 53

Reconstruction Error in PCA
If we center the data, the residual (reconstruction error) becomes r = x̆ − x̂ because the
reconstructed data will also be centered according to Eq. (4). According to Eqs. (2), and
(4), we have:

r = x − x̂ = x̆ + µx − UU⊤x̆ − µx = x̆ − UU⊤x̆ . (24)

This figure shows the projection of a two-dimensional point (after the data being
centered) onto the first principal direction, its reconstruction, and its reconstruction error.
As can be seen in this figure, the reconstruction error is different from least square error in
linear regression.

Principal Component Analysis 17 / 53

Reconstruction Error in PCA
For n data points, we have:

R := X − X̂ = X̆ + µx − UU⊤X̆ − µx = X̆ − UU⊤X̆ , (25)

where Rd×n ∋ R = [r1, . . . , rn] is the matrix of residuals.
If we want to minimize the reconstruction error subject to the orthogonality of the
projection matrix U, we have:

minimize
U

||X̆ − UU⊤X̆ ||2F ,

subject to U⊤U = I .
(26)

The objective function can be simplified:

||X̆ − UU⊤X̆ ||2F

= tr
(
(X̆ − UU⊤X̆)⊤(X̆ − UU⊤X̆)

)
= tr

(
(X̆⊤ − X̆⊤UU⊤)(X̆ − UU⊤X̆)

)
= tr(X̆⊤X̆ − 2X̆⊤UU⊤X̆ + X̆⊤U U⊤U︸ ︷︷ ︸

I

U⊤X̆)

= tr(X̆⊤X̆ − X̆⊤UU⊤X̆) = tr(X̆⊤X̆)− tr(X̆⊤UU⊤X̆) = tr(X̆⊤X̆)− tr(X̆ X̆⊤UU⊤).

Using Lagrange multiplier [2], we have:

L = tr(X̆⊤X̆)− tr(X̆ X̆⊤UU⊤) + tr
(
Λ⊤(U⊤U − I)

)
,

where Λ ∈ Rp×p is a diagonal matrix diag([λ1, . . . , λp]⊤) containing the Lagrange
multipliers.

Principal Component Analysis 18 / 53

Reconstruction Error in PCA

Equating the derivative of Lagrangian to zero gives:

Rd×p ∋
∂L
∂U

= −2X̆ X̆⊤U + 2UΛ
set
= 0

=⇒ X̆ X̆⊤U = UΛ,

(17)
=⇒ SU = UΛ, (27)

which is again the eigenvalue problem [3] for the covariance matrix S.
We had the same eigenvalue problem in PCA. Therefore, PCA subspace is the best linear
projection in terms of reconstruction error. In other words, PCA has the least squared
error in reconstruction.

Principal Component Analysis 19 / 53

Reconstruction Error in PCA
We saw that PCA is the best in reconstruction error for linear projection. If we have
m > 1 successive linear projections, the reconstruction is:

X̂ = U1 · · ·Um︸ ︷︷ ︸
reconstruct

U⊤
m · · ·U⊤

1︸ ︷︷ ︸
project

X̆ + µx , (28)

which can be seen as an undercomplete autoencoder [4] with 2m layers without activation
function (or with identity activation functions f (x) = x). The µx is modeled by the
intercepts included as input to the neurons of autoencoder layers.

As we do not have any non-linearity between the projections, we can define:

Ü := U1 · · ·Um =⇒ Ü⊤
= U⊤

m · · ·U⊤
1 , (29)

∴ X̂ = ÜÜ⊤X + µx . (30)

The Eq. (30) shows that the whole autoencoder can be reduced to an undercomplete
autoencoder with one hidden layer where the weight matrix is Ü. In other words, in
autoencoder neural network, every layer excluding the activation function behaves as a
linear projection.

Comparing the Eqs. (8) and (30) shows that the whole autoencoder is reduced to PCA.
Therefore, PCA is equivalent to an undercomplete autoencoder with one hidden layer
without activation function. Therefore, if we trained weights of such an autoencoder by
back-propagation [5], they will be roughly equal to the PCA directions.

Principal Component Analysis 20 / 53

Reconstruction Error in PCA

Principal Component Analysis 21 / 53

PCA Using Singular
Value Decomposition

Principal Component Analysis 22 / 53

PCA Using Singular Value Decomposition

The PCA can be done using Singular Value Decomposition (SVD) of X̆ , rather than

eigen-decomposition of S. Consider the complete SVD of X̆ :

Rd×n ∋ X̆ = UΣV⊤, (31)

where the columns of U ∈ Rd×d (called left singular vectors) are the eigenvectors of

X̆ X̆⊤
, the columns of V ∈ Rn×n (called right singular vectors) are the eigenvectors of

X̆⊤X̆ , and the Σ ∈ Rd×n is a rectangular diagonal matrix whose diagonal entries (called

singular values) are the square root of eigenvalues of X̆ X̆⊤
and/or X̆⊤X̆ . See

Preliminaries slides for proof of this claim.

According to Eq. (17), the X̆ X̆⊤
is the covariance matrix S. In Eq. (23), we saw that

the eigenvectors of S are the principal directions. On the other hand, here, we saw that

the columns of U are the eigenvectors of X̆ X̆⊤
. Hence, we can apply SVD on X̆ and take

the left singular vectors (columns of U) as the principal directions.

An interesting thing is that in SVD of X̆ , the columns of U are automatically sorted from
largest to smallest singular values (eigenvalues) and we do not need to sort as we did in
using eigenvalue decomposition for the covariance matrix.

Principal Component Analysis 23 / 53

Determining the
Number of Principal
Directions

Principal Component Analysis 24 / 53

Determining the Number of Principal Directions

Usually in PCA, the components with smallest eigenvalues are cut off to reduce the data.
There are different methods for estimating the best number of components to keep
(denoted by p), such as using Bayesian model selection [6], scree plot [7], and comparing

the ratio λj/
∑d

k=1 λk with a threshold [8] where λi denotes the eigenvalue related to the
j-th principal component.

Here, we explain the two methods of scree plot and the ratio.

The scree plot [7] is a plot of the eigenvalues versus sorted components from the leading
(having largest eigenvalue) to trailing (having smallest eigenvalue). A threshold for the
vertical (eigenvalue) axis chooses the components with the large enough eigenvalues and
removes the rest of the components. A good threshold is where the eigenvalue drops
significantly. In most of the datasets, a significant drop of eigenvalue occurs.

Another way to choose the best components is the ratio [8]:

λj∑d
k=1 λk

, (32)

for the j-th component. Then, we sort the features from the largest to smallest ratio and
select the p best components or up to the component where a significant drop of the ratio
happens.

Principal Component Analysis 25 / 53

Dual Principal
Component Analysis

Principal Component Analysis 26 / 53

Dual Principal Component Analysis

Assume the case where the dimensionality of data is high and much greater than the
sample size, i.e., d ≫ n. In this case, consider the incomplete SVD of X̆ :

X̆ = UΣV⊤, (33)

where here, U ∈ Rd×p and V ∈ Rn×p contain the p leading left and right singular vectors
of X̆ , respectively, where p is the number of “non-zero” singular values of X̆ and usually
p ≪ d .

Here, the Σ ∈ Rp×p is a square matrix having the p largest non-zero singular values of X̆ .

As the Σ is a square diagonal matrix and its diagonal includes non-zero entries (is
full-rank), it is invertible [9]. Therefore, Σ−1 = diag([1

σ1
, . . . , 1

σp
]⊤) if we have

Σ = diag([σ1, . . . , σp]⊤).

Principal Component Analysis 27 / 53

Dual Principal Component Analysis: Projection

We had:

X̆ = UΣV⊤,

Recall Eq. (7) for projection onto PCA subspace: X̃ = U⊤X̆ . On the other hand,
according to Eq. (33), we have:

X̆ = UΣV⊤ =⇒ U⊤X̆ = U⊤U︸ ︷︷ ︸
I

ΣV⊤ = ΣV⊤. (34)

According to Eqs. (7) and (34), we have:

∴ X̃ = ΣV⊤ (35)

The Eq. (35) can be used for projecting data onto PCA subspace instead of Eq. (7). This
is projection of training data in dual PCA.

Principal Component Analysis 28 / 53

Dual Principal Component Analysis: Reconstruction

We had:

X̆ = UΣV⊤,

According to Eq. (33), we have:

X̆ = UΣV⊤ =⇒ X̆V = UΣV⊤V︸ ︷︷ ︸
I

= UΣ

=⇒ U = X̆VΣ−1. (36)

Plugging Eq. (36) in Eq. (8) gives us:

X̂ = UX̃ + µx
(36)
= X̆VΣ−1X̃ + µx

(35)
= X̆V Σ−1Σ︸ ︷︷ ︸

I

V⊤ + µx

=⇒ X̂ = X̆VV⊤ + µx . (37)

The Eq. (37) can be used for reconstruction of data instead of Eq. (8). This is
reconstruction of training data in dual PCA.

Principal Component Analysis 29 / 53

Dual Principal Component Analysis: Out-of-sample
Projection

Recall Eq. (9) for projection of an out-of-sample point x t onto PCA subspace:

x̃ t = U⊤x̆ t .

According to Eq. (36):

U = X̆VΣ−1,

we have:

U⊤ (36)
= Σ−⊤V⊤X̆⊤ (a)

= Σ−1V⊤X̆⊤
(38)

(9)
=⇒ x̃ t = Σ−1V⊤X̆⊤x̆ t , (39)

where (a) is because Σ−1 is diagonal and thus symmetric. The Eq. (39) can be used for
projecting out-of-sample data point onto PCA subspace instead of Eq. (9). This is
out-of-sample projection in dual PCA.

Considering all the nt out-of-sample data points, the projection is:

X̃ t = Σ−1V⊤X̆⊤X̆ t . (40)

Principal Component Analysis 30 / 53

Dual Principal Component Analysis: Out-of-sample
Reconstruction

Recall Eq. (10) for reconstruction of an out-of-sample point x t :

x̂ t = UU⊤x̆ t + µx = Ux̃ t + µx .

According to Eqs. (36) and (38), we have:

UU⊤ = X̆VΣ−1Σ−1V⊤X̆⊤

(10)
=⇒ x̂ t = X̆VΣ−2V⊤X̆⊤x̆ t + µx . (41)

The Eq. (41) can be used for reconstruction of an out-of-sample data point instead of Eq.
(10). This is out-of-sample reconstruction in dual PCA.

Considering all the nt out-of-sample data points, the reconstruction is:

X̂ t = X̆VΣ−2V⊤X̆⊤X̆ t + µx . (42)

Principal Component Analysis 31 / 53

Why is Dual PCA Useful?

The dual PCA can be useful for two reasons:

1 As can be seen in Eqs. (35), (37), (39), and (41):

X̃ = ΣV⊤,

X̂ = X̆VV⊤ + µx ,

x̃ t = Σ−1V⊤X̆⊤x̆ t ,

x̂ t = X̆VΣ−2V⊤X̆⊤x̆ t + µx ,

the formulae for dual PCA only include V and not U. The columns of V are the

eigenvectors of X̆⊤X̆ ∈ Rn×n and the columns of U are the eigenvectors of

X̆ X̆⊤ ∈ Rd×d . In case the dimensionality of data is much high and greater than

the sample size, i.e., n ≪ d , computation of eigenvectors of X̆⊤X̆ is easier and

faster than X̆ X̆⊤
and also requires less storage. Therefore, dual PCA is more

efficient than direct PCA in this case in terms of both speed and storage. Note that
the results of PCA and dual PCA are exactly the same.

2 Some inner product forms, such as X̆⊤x̆ t , have appeared in the formulae of dual
PCA. This provides opportunity for kernelizing the PCA to have kernel PCA using
the so-called kernel trick. As will be seen in the next section, we use dual PCA in
formulation of kernel PCA.

Principal Component Analysis 32 / 53

Kernel Principal
Component Analysis

Principal Component Analysis 33 / 53

Kernel Principal Component Analysis

The PCA is a linear method because the projection is linear. In case the data points exist
on a non-linear sub-manifold, the linear subspace learning might not be completely
effective.

In order to handle this problem of PCA, we have two options. We should either change
PCA to become a nonlinear method or we can leave the PCA to be linear but change the
data hoping to fall on a linear or close to linear manifold.

Here, we do the latter so we change the data. We increase the dimensionality of data by
mapping the data to feature space with higher dimensionality hoping that in the feature
space, it falls on a linear manifold. This is referred to as “blessing of dimensionality” in
the literature [10] which is pursued using kernels [11]. This PCA method which uses the
kernel of data is named “kernel PCA” [12].

Principal Component Analysis 34 / 53

Kernel and Centered Kernel

Kernel:

k(x1, x2) := ϕ(x1)
⊤ϕ(x2), (43)

K(X 1,X 2) := Φ(X 1)
⊤Φ(X 2). (44)

If we want the pulled data Φ(X) to be centered, i.e.:

Φ̆(X) := Φ(X)H, (45)

we should double center the kernel matrix because if we use centered pulled data, we have:

Φ̆(X)⊤Φ̆(X) =
(
Φ(X)H

)⊤(
Φ(X)H

)
= HΦ(X)⊤Φ(X)H = HK xH,

which is the double-centered kernel matrix. Thus:

K̆ x := HK xH = Φ̆(X)⊤Φ̆(X), (46)

where K̆ x denotes the double-centered kernel matrix.

Principal Component Analysis 35 / 53

Kernel Principal Component Analysis: Projection
We apply incomplete SVD on the centered pulled (mapped) data Φ̆(X):

Rt×n ∋ Φ̆(X) = UΣV⊤, (47)

where U ∈ Rt×p and V ∈ Rn×p contain the p leading left and right singular vectors of
Φ̆(X), respectively, where p is the number of “non-zero” singular values of Φ̆(X) and
usually p ≪ t. Here, the Σ ∈ Rp×p is a square matrix having the p largest non-zero
singular values of Φ̆(X).

However, as mentioned before, the pulled data are not necessarily available so Eq. (47)
cannot be done. The kernel, however, is available. Therefore, we apply
eigen-decomposition [3] to the double-centered kernel:

K̆ xV = VΛ, (48)

where the columns of V and the diagonal of Λ are the eigenvectors and eigenvalues of
K̆ x , respectively.

The columns of V in Eq. (47) are the right singular vectors of Φ̆(X) which are equivalent

to the eigenvectors of Φ̆(X)⊤Φ̆(X) = K̆ x , according to the Preliminaries slides. Also,
according to those slides, the diagonal of Σ in Eq. (47) is equivalent to the square root of

eigenvalues of K̆ x .

Therefore, in practice where the pulling function is not necessarily available, we use Eq.
(48) in order to find the V and Σ in Eq. (47).

Principal Component Analysis 36 / 53

Kernel Principal Component Analysis: Projection
We had:

K̆ xV = VΛ.

The Eq. (48) can be restated as:

K̆ xV = VΣ2, (49)

to be compatible to Eq. (47):

Rt×n ∋ Φ̆(X) = UΣV⊤.

It is noteworthy that because of using Eq. (49) instead of Eq. (47), the projection
directions U are not available in kernel PCA to be observed or plotted.

Similar to what we did for Eq. (35):

Φ̆(X) = UΣV⊤

=⇒ U⊤Φ̆(X) = U⊤U︸ ︷︷ ︸
I

ΣV⊤ = ΣV⊤

∴ Φ(X̃) = U⊤Φ̆(X) = ΣV⊤, (50)

where Σ and V are obtained from Eq. (49). The Eq. (50) is projection of the training
data in kernel PCA.

Principal Component Analysis 37 / 53

Kernel Principal Component Analysis: Reconstruction

Similar to what we did for Eq. (37):

Φ̆(X) = UΣV⊤ =⇒ Φ̆(X)V = UΣV⊤V︸ ︷︷ ︸
I

= UΣ

=⇒ U = Φ̆(X)VΣ−1. (51)

Therefore, the reconstruction is:

Φ(X̂) = UΦ(X̃) + µx
(51)
= Φ̆(X)VΣ−1Φ(X̃) + µx

(50)
= Φ̆(X)V Σ−1Σ︸ ︷︷ ︸

I

V⊤ + µx

=⇒ Φ(X̂) = Φ̆(X)VV⊤ + µx . (52)

However, the Φ̆(X) is not available necessarily; therefore, we cannot reconstruct the
training data in kernel PCA.

Principal Component Analysis 38 / 53

Kernel Principal Component Analysis: Out-of-sample
Projection

Similar to what we did for Eq. (39):

U⊤ (51)
= Σ−⊤V⊤Φ̆(X)⊤

(a)
= Σ−1V⊤Φ̆(X)⊤

=⇒ ϕ(x̃ t) = U⊤ϕ̆(x t) = Σ−1V⊤Φ̆(X)⊤ϕ̆(x t),

=⇒ ϕ(x̃ t) = Σ−1V⊤k̆t , (53)

where (a) is because Σ−1 is diagonal and thus symmetric and the k̆t ∈ Rn is calculated
by (see Appendix C in our tutorial [13] for proof):

Rn ∋ k̆t = kt −
1

n
1n×nkt −

1

n
K1n +

1

n2
1n×nK1n. (54)

The Eq. (53) is the projection of out-of-sample data in kernel PCA.
Considering all the nt out-of-sample data points, X t , the projection is:

ϕ(X̃ t) = Σ−1V⊤K̆ t , (55)

where K̆ t is calculated by (see Appendix C in our tutorial [13] for proof):

Rn×nt ∋ K̆ t = K t −
1

n
1n×nK t −

1

n
K1n×nt +

1

n2
1n×nK1n×nt , (56)

where Rn×n ∋ 1n×n := 1n1⊤n , Rn×nt ∋ 1n×nt := 1n1⊤nt , R
n ∋ 1n := [1, . . . , 1]⊤, and

Rnt ∋ 1nt := [1, . . . , 1]⊤.

Principal Component Analysis 39 / 53

Kernel Principal Component Analysis: Out-of-sample
Reconstruction

Similar to what we did for Eq. (41):

=⇒ UU⊤ (51)
= Φ̆(X)VΣ−1Σ−1V⊤Φ̆(X)⊤

=⇒ ϕ(x̂ t) = Φ̆(X)VΣ−2V⊤Φ̆(X)⊤ϕ̆(x t) + µx

=⇒ ϕ(x̂ t) = Φ̆(X)VΣ−2V⊤k̆t + µx , (57)

where the k̆t ∈ Rn is calculated by Eq. (54).

Considering all the nt out-of-sample data points, X t , the reconstruction is:

Φ(X̂ t) = Φ̆(X)VΣ−2V⊤K̆ t + µx , (58)

where K̆ t is calculated by Eq. (56).

In Eq. (57), the Φ̆(X) appeared at the left of expression, is not available necessarily;
therefore, we cannot reconstruct an out-of-sample point in kernel PCA.

According to Eqs. (52) and (57), we conclude that kernel PCA is not able to reconstruct
any data, whether training or out-of-sample.

Principal Component Analysis 40 / 53

Why is Kernel PCA Useful?

Finally, it is noteworthy that as the choice of the best kernel might be hard, the kernel
PCA is not “always” effective in practice [9].

However, it provides us some useful theoretical insights for explaining the PCA,
Multi-Dimensional Scaling (MDS) [14], Isomap [15], Locally Linear Embedding (LLE)
[16], and Laplacian Eigenmap (LE) [17] as special cases of kernel PCA with their own
kernels (see [18] and chapter 2 in [19]).

Principal Component Analysis 41 / 53

Supervised Principal
Component Analysis
Using HSIC

Principal Component Analysis 42 / 53

Hilbert-Schmidt Independence Criterion
Suppose we want to measure the dependence of two random variables.

Measuring the correlation between them is easier because correlation is just “linear”
dependence.

According to [20], two random variables are independent if and only if any bounded
continuous functions of them are uncorrelated. Therefore, if we map the two random
variables x and y to two different (“separable”) Reproducing Kernel Hilbert Spaces
(RKHSs) and have ϕ(x) and ϕ(y), we can measure the correlation of ϕ(x) and ϕ(y) in
Hilbert space to have an estimation of dependence of x and y in the original space.

An empirical estimation of the Hilbert-Schmidt Independence Criterion (HSIC) is [21]:

HSIC :=
1

(n − 1)2
tr(K̈ xHK yH), (59)

where K̈ x and K y are the kernels over x and y , respectively. In other words,

K̈ x = ϕ(x)⊤ϕ(x) and K y = ϕ(y)⊤ϕ(y).
The term 1/(n − 1)2 is used for normalization. The H is the centering matrix:

Rn×n ∋ H = I − (1/n)11⊤. (60)

The HK yH double centers the K y in HSIC.

The HSIC (Eq. (59)) measures the dependence of two random variable vectors x and y .
Note that HSIC = 0 and HSIC > 0 mean that x and y are independent and dependent,
respectively. The greater the HSIC, the greater dependence they have.

Principal Component Analysis 43 / 53

Supervised PCA
Supervised PCA (SPCA) [22] uses the HSIC. We have the data X = [x1, . . . , xn] ∈ Rd×n

and the labels Y = [y1, . . . , yn] ∈ Rℓ×n, where ℓ is the dimensionality of the labels and
we usually have ℓ = 1. However, in case the labels are encoded (e.g., one-hot-encoded) or
SPCA is used for regression (e.g., see [23]), we have ℓ > 1.
SPCA tries to maximize the dependence of the projected data points U⊤X and the labels
Y . It uses a linear kernel for the projected data points:

K̈ x = (U⊤X)⊤(U⊤X) = X⊤UU⊤X , (61)

and an arbitrary kernel K y over Y .
For classification task, one of the best choices for the K y is delta kernel [22] where the
(i , j)-th element of kernel is:

K y = δy i ,y j
:=

{
1 if y i = y j ,
0 if y i ̸= y j ,

(62)

where δy i ,y j
is the Kronecker delta which is one if the x i and x j belong to the same class.

Another good choice for kernel in classification task in SPCA is an arbitrary kernel (e.g.,
linear kernel K y = Y⊤Y) over Y where the columns of Y are one-hot encoded. This is a
good choice because the distances of classes will be equal; otherwise, some classes will fall
closer than the others for no reason and fairness between classes goes away.
The SPCA can also be used for regression (e.g., see [23]) and that is one of the
advantages of SPCA. In that case, a good choice for K y is an arbitrary kernel (e.g., linear
kernel K y = Y⊤Y) over Y where the columns of the Y , i.e., labels, are the observations
in regression. Here, the distances of observations have meaning and should not be
manipulated.

Principal Component Analysis 44 / 53

Supervised PCA

HSIC was:

HSIC :=
1

(n − 1)2
tr(K̈ xHK yH).

The HSIC in SPCA case becomes:

HSIC =
1

(n − 1)2
tr(X⊤UU⊤XHK yH). (63)

where U ∈ Rd×p is the unknown projection matrix for projection onto the SPCA subspace
and should be found. The desired dimensionality of the subspace is p and usually p ≪ d .

We should maximize the HSIC in order to maxzimize the dependence of U⊤X and Y .
Hence:

maximize
U

tr(X⊤UU⊤XHK yH),

subject to U⊤U = I ,
(64)

where the constraint ensures that the U is an orthogonal matrix, i.e., the SPCA directions
are orthonormal.

Principal Component Analysis 45 / 53

Supervised PCA
We had:

maximize
U

tr(X⊤UU⊤XHK yH),

subject to U⊤U = I .

Using Lagrangian [2], we have:

L = tr(X⊤UU⊤XHK yH)− tr
(
Λ⊤(U⊤U − I)

)
(a)
= tr(UU⊤XHK yHX⊤)− tr

(
Λ⊤(U⊤U − I)

)
,

where (a) is because of the cyclic property of trace and Λ ∈ Rp×p is a diagonal matrix
diag([λ1, . . . , λp]⊤) including the Lagrange multipliers.
Setting the derivative of Lagrangian to zero gives:

Rd×p ∋
∂L
∂U

= 2XHK yHX⊤U − 2UΛ
set
= 0

=⇒ XHK yHX⊤U = UΛ, (65)

which is the eigen-decomposition of XHK yHX⊤ where the columns of U and the
diagonal of Λ are the eigenvectors and eigenvalues of XHK yHX⊤, respectively [3].
The eigenvectors and eigenvalues are sorted from the leading (largest eigenvalue) to the
trailing (smallest eigenvalue) because we are maximizing in the optimization problem.
As a conclusion, if projecting onto the SPCA subspace or span{u1, . . . , up}, the SPCA
directions {u1, . . . , up} are the sorted eigenvectors of XHK yHX⊤. In other words, the
columns of the projection matrix U in SPCA are the p leading eigenvectors of
XHK yHX⊤.

Principal Component Analysis 46 / 53

Supervised PCA

Similar to what we had in PCA, the projection, projection of out-of-sample,
reconstruction, and reconstruction of out-of-sample in SPCA are:

X̃ = U⊤X , (66)

x̃ t = U⊤x t , (67)

X̂ = UU⊤X = UX̃ , (68)

x̂ t = UU⊤x t = Ux̃ t , (69)

respectively.

In SPCA, there is no need to center the data as the centering is already handled by H in
HSIC.

Considering all the nt out-of-sample data points, the projection and reconstruction are:

X̃ t = U⊤X t , (70)

X̂ t = UU⊤X t = UX̃ t , (71)

respectively.

Principal Component Analysis 47 / 53

PCA is a special case of SPCA!

Not considering the similarities of the labels means that we do not care about the class
labels so we are unsupervised.

If we do not consider the similarities of labels, the kernel over the labels becomes the
identity matrix, K y = I .
According to Eq. (65), SPCA is the eigen-decomposition of XHK yHX⊤. In this case,
this matrix becomes:

XHK yHX⊤ = XHIHX⊤ = XHIH⊤X⊤

= XHH⊤X⊤ = (XH)(XH)⊤

(5)
= X̆ X̆⊤ (17)

= S,

which is the covariance matrix whose eigenvectors are the PCA directions.

Thus, if we do not consider the similarities of labels, i.e., we are unsupervised, SPCA
reduces to PCA as expected.

Principal Component Analysis 48 / 53

More Information

For reading about dual SPCA, kernel SPCA, and eigenfaces, see our tutorial:
”Unsupervised and supervised principal component analysis: Tutorial” [13]

Principal Component Analysis 49 / 53

Acknowledgment

Some slides are based on our tutorial paper: ”Unsupervised and supervised principal
component analysis: Tutorial” [13]

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics.

The code of PCA in my GitHub page (in Python language):
https://github.com/bghojogh/Principal-Component-Analysis

PCA in sklearn: https:
//scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

Principal Component Analysis 50 / 53

https://github.com/bghojogh/Principal-Component-Analysis
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

References

[1] S. T. Dumais, “Latent semantic analysis,” Annual review of information science and
technology, vol. 38, no. 1, pp. 188–230, 2004.

[2] S. Boyd and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[3] B. Ghojogh, F. Karray, and M. Crowley, “Eigenvalue and generalized eigenvalue problems:
Tutorial,” arXiv preprint arXiv:1903.11240, 2019.

[4] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning.
MIT press, 2016.

[5] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[6] T. P. Minka, “Automatic choice of dimensionality for pca,” in Advances in neural
information processing systems, pp. 598–604, 2001.

[7] R. B. Cattell, “The scree test for the number of factors,” Multivariate behavioral research,
vol. 1, no. 2, pp. 245–276, 1966.

[8] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley interdisciplinary
reviews: computational statistics, vol. 2, no. 4, pp. 433–459, 2010.

[9] A. Ghodsi, “Dimensionality reduction: a short tutorial,” Department of Statistics and
Actuarial Science, Univ. of Waterloo, Ontario, Canada, vol. 37, 2006.

Principal Component Analysis 51 / 53

References (cont.)

[10] D. L. Donoho, “High-dimensional data analysis: The curses and blessings of
dimensionality,” AMS math challenges lecture, 2000.

[11] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,” The
annals of statistics, pp. 1171–1220, 2008.

[12] B. Schölkopf, A. Smola, and K.-R. Müller, “Kernel principal component analysis,” in
International conference on artificial neural networks, pp. 583–588, Springer, 1997.

[13] B. Ghojogh and M. Crowley, “Unsupervised and supervised principal component analysis:
Tutorial,” arXiv preprint arXiv:1906.03148, 2019.

[14] M. A. Cox and T. F. Cox, “Multidimensional scaling,” in Handbook of data visualization,
pp. 315–347, Springer, 2008.

[15] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric framework for
nonlinear dimensionality reduction,” science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[16] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear
embedding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[17] M. Belkin and P. Niyogi, “Laplacian eigenmaps for dimensionality reduction and data
representation,” Neural computation, vol. 15, no. 6, pp. 1373–1396, 2003.

[18] J. H. Ham, D. D. Lee, S. Mika, and B. Schölkopf, “A kernel view of the dimensionality
reduction of manifolds,” in International Conference on Machine Learning, 2004.

Principal Component Analysis 52 / 53

References (cont.)

[19] H. Strange and R. Zwiggelaar, Open Problems in Spectral Dimensionality Reduction.
Springer, 2014.

[20] M. Hein and O. Bousquet, “Kernels, associated structures and generalizations,”
Max-Planck-Institut fuer biologische Kybernetik, Technical Report, 2004.

[21] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, “Measuring statistical dependence
with Hilbert-Schmidt norms,” in International conference on algorithmic learning theory,
pp. 63–77, Springer, 2005.

[22] E. Barshan, A. Ghodsi, Z. Azimifar, and M. Z. Jahromi, “Supervised principal component
analysis: Visualization, classification and regression on subspaces and submanifolds,”
Pattern Recognition, vol. 44, no. 7, pp. 1357–1371, 2011.

[23] B. Ghojogh and M. Crowley, “Instance ranking and numerosity reduction using matrix
decomposition and subspace learning,” in Advances in Artificial Intelligence: 32nd
Canadian Conference on Artificial Intelligence, Canadian AI 2019, Springer, 2019.

Principal Component Analysis 53 / 53

