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Variational Inference

@ Consider a dataset {x;}7_,. Assume that every data point x; € R? is generated from a
latent variable z; € RP. This latent variable has a prior distribution P(z;). According to
Bayes' rule, we have:

P(x; | z;) P(z)

P(z; | x;) = . 1

(zi | xi) P(x;) (1)
@ Let P(z;) be an arbitrary distribution denoted by q(z;). Suppose the parameter of
conditional distribution of z; on x; is denoted by 6; hence, P(z; | x;) = P(z;| x;, 0).

Therefore, we can say:
P(x;i|z;,0)P(z; |6
P(Zi|xi,9): (XI|ZH ) (Zl| ) (2)

P(xi|6)
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Variational Inference

@ Consider the Kullback-Leibler (KL) divergence [1] between the prior probability of the
latent variable and the posterior of the latent variable:

KL(q(zi) | P(zi | x;,0)) @ /q(z,-) log (%)dn

= [ atz) (log(a(z) ~ log(P(z; | x1.6))) dz;

@ /q(z,-)( log(q(z;)) — log(P(x; | z;, 0)) — log(P(z; | 0)) + log(P(x; | 0))) dz;

© jog(P(x; | 0)) + / a(z:) (log(q(z:)) — log(B(x; | z:,8)) — log(P(z; | 0))) dz;

~108(2(x;10)) + [ a(z) o8k =

~t0g(P(x;|0)) + [ a(z) log( 2 225 d
= log(P(x; | 8)) + KL(q(z/) || P(x;, 2 | 9)),

where (a) is for definition of KL divergence and (b) is because log(P(x; | 0)) is
independent of z; and comes out of integral and f dz; = 1.
@ Hence:

log(P(x; | 0)) =KL(a(z/) | P(z; | xi, 0)) — KL(q(z)) | P(xi, z; | 0)). ®3)
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Variational Inference
@ We found:

log(P(x; | 0)) =KL(q(z;) || P(z; | x;,8)) — KL(q(2;) || P(x;, z; | 8)).
@ We define the Evidence Lower Bound (ELBO) as:
£L(q,0) = —KL(q(z)) | P(x;, i | 8)). (4)
So:
log(P(x; |8)) = KL(q(z/) || P(zi | x;, 8)) + L(q, ).
@ Therefore:

£L(q,0) = log(P(x; |0)) — KL(q(z;) || P(z; | x:,0)) . )

>0

@ As the second term is negative with its minus, the ELBO is a lower bound on the log
likelihood of data:

L(q,0) < log(P(x;|0)). (6)

The likelihood P(x; | 8) is also referred to as the evidence.
@ Note that this lower bound gets tight when:

£(q,0) ~ log(P(x; |8)) = 0 < KL(q(z:) || P(zi | x;,0)) =0
= q(z;) =P(z;]x;,0). ™
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Variational Inference

@ We found:

log(P(x; | 0)) = KL(a(zi) | P(zi | xi, 8)) + L(q, 6).

KL (q(2) || P(2; | :,0))
LOJ;ikeIihood log(P(z; | 9))

A
ELBO

L(q,0)
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Expectation Maximization in Variational Inference

@ According to MLE, we want to maximize the log-likelihood of data. According to Eq. (6):
£L(q,0) < log(P(x;|0)),

maximizing the ELBO will also maximize the log-likelihood.

@ The Eq. (6) holds for any prior distribution g. We want to find the best distribution to
maximize the lower bound.

@ Hence, EM for variational inference is performed iteratively as:
E-step: ¢ :=argmax £(q,060 1), (8)
q

M-step: 0 .= arg max E(q(t), 0), (9)

where t denotes the iteration index.
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Expectation Maximization in Variational Inference
@ E-step in EM for Variational Inference: The E-step is:

max £(g,00 1) © max log(P(x; | 0¢—1)) + max (— KL(q(z) || P(z; | xi, g(t—l))))
= maxlog(P(x; |0~ 1))) + min KL (q(z)) | P(z; | x;, 0~ 1))).
q q

@ The second term is always non-negative; hence, its minimum is zero:

KL(q(z;) | P(z; | x;, 0“’1)))

which was already found in Eq. (7). Thus, the E-step assigns:
q(z;) « P(z; | x;,0¢1).

@ In other words, in the figure, it pushes the middle line toward the above line by

maximizing the ELBO.

KL(q(z:) | P(i | 2:,6))
LoAkehhood IOg(P(mi | B))

set

=0 = q(z;)) =P(z;|x;,0

ELBO

L(q,0)

A

A
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Expectation Maximization in Variational Inference
@ M-step in EM for Variational Inference: The M-step is:
max £(q(%,6) @ max (— KL(q0(z;) | P(x;, 271 6)))
@ ol @z ion( 9@
max [~ [ a9z o8 1gy) 421

= max [ a9z og(P(x;. 2 |0)) dz; — max [ o(0(z:)log(al")(z) d,

where (a) is for definition of KL divergence.

@ The second term is constant w.r.t. 8. Hence:
max £(q®,0) = mgx/ g\ (z;) log(P(x;, z; | )) dz;
@ maxE [logP(x/,2; | 6)]
- ] Nq(t)(zi) g is%i )
where (a) is because of definition of expectation. Thus, the M-step assigns:

o) arg max ENq(f)(z;) [Iog P(x;, z; | 0)] (11)
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Expectation Maximization in Variational Inference
@ We found:

o) arg mgx ENq(t)(z,-) [Iog P(x;, z; | 0)] .

@ In other words, in the figure, it pushes the above line higher.

KL (g(2) || B(zi |, 6))
Log/;ikenhood log(P(z; | 0))

A

ELBO

L(q,0)

A

@ The E-step and M-step together somehow play a game where the E-step tries to reach
the middle line (or the ELBO) to the log-likelihood and the M-step tries to increase the
above line (or the log-likelihood). This procedure is done repeatedly so the two steps help
each other improve to higher values.

@ To summarize, the EM in variational inference is:

q\(z)) « P(zi | x;, 607 Y), (12)
0 « arg max E o0z [logP(x;,z; | 6)]. (13)
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Expectation Maximization in Variational Inference

@ It is noteworthy that, in variational inference, sometimes, the parameter 0 is absorbed into
the latent variable z;.

@ According to the chain rule, we have:
P(x;,z;,0) = P(x; | z;,0) P(z; | 0) P(0).
@ Considering the term P(z; | ) P(0) as one probability term, we have:
P(x;,z;) = P(x;| z;) P(z;),

where the parameter 0 disappears because of absorption.
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Factor Analysis
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Factor Analysis

@ Factor analysis [2, 3, 4, 5] is one of the simplest and most fundamental generative models.

@ Factor analysis assumes that every data point x; € RY is generated from a latent variable
z; € RP. The latent variable is also referred to as the latent factor; hence, the name of
factor analysis comes from the fact that it analyzes the latent factors.

@ In factor analysis, we assume that the data point x; is obtained through the following
steps: (1) by linear projection of the p-dimensional z; onto a d-dimensional space by
projection matrix A € RI%P, then (2) applying some linear translation, and finally (3)
adding a Gaussian noise € € R? with covariance matrix W € R9%9,

@ Note that as the noises in different dimensions are independent, the covariance matrix W
is diagonal.

@ Factor analysis can be illustrated as a graphical model [6] where the visible data variable
is conditioned on the latent variable and the noise random variable.
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Factor Analysis

@ For simplicity, the prior distribution of the latent variable can be assumed to be a
multivariate Gaussian distribution:

p(_(Zr—udeElﬁf—l%))

P(zi) = N(zi | po, Xo) = 2

(14)

1
N

where 1y € RP and £y € RPXP are the mean and the covariance matrix of z; and |.| is
the determinant of matrix.

@ x; is obtained through (1) the linear projection of z; by A € R?%P, (2) applying some
linear translation, and (3) adding a Gaussian noise € € R? with covariance W € RI*¢,

@ Hence, the data point x; has a conditional multivariate Gaussian distribution given the
latent variable; its conditional likelihood is:

P(x;|z;) = P(x; | zi, A, 1, W) = N(Az; + p, V), (15)

where g, which is the translation vector, is the mean of data {x;}7_;:

1 n
RY> p:= - Zx,-. (16)
i=1
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Factor Analysis

@ The marginal distribution of x; is:
POx) = [ B(xi|2) P(zi) dz; —
P(x; | A, p, W) = /]P(Xi|zi7l\7 1, W) P(2; | pg, Xo) dz;

@ A (A + 15, W + AEGAT) 1)
= N(@W+AR), (18)

where RY 5 [i := Apg + p, RI%X9 5 A= I\Zél/z), and (a) is because mean is linear and
variance is quadratic so the mean and variance of projection are applied linearly and
quadratically, respectively.

@ As the mean p and covariance A are needed to be learned, we can absorb pg and X into
p and A and assume that pg =0 and o = /.

@ In summary, factor analysis assumes every data point x; € R? is obtained by projecting a
latent variable z; € RP onto a d-dimensional space by projection matrix A € RY%P and
translating it by u € R? and finally adding some Gaussian noise € € R? (whose
dimensions are independent) as:

xi:=Nz; + p+ €, (19)
P(z;) = N(0, 1), (20)
P(e) = N (0, W). (21)
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Factor Analysis

@ The joint distribution of x; and z; is:
x;
Yi= L:] ~ N(py, Zy). (22)
@ The expectation of x; is:

Elx;] 2 ElAz; + p+ €] = AE[z] + o + E[e] L pu, (23)

where (a) is because of Egs. (20) and (21).
@ Hence:

]2l

where (a) is because of Eqs. (20) and (23).
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Factor Analysis

@ Lemma:

Lemma

Consider two random variables x; € R? and z; € RP and let y, : [xT T]T RI+P. Assume
that x; and z; are jointly multivariate Gaussian; hence, the variable y; has a multivariate
Gaussian distribution, i.e., y; ~ N(p,,Ey). The mean and covariance can be decomposed as:

I‘l’y - ["‘LTvlJ’T]T € Rd+P (25)
PETID NP} (d+p)x (d+p)

¥ = R\TP P 26

4 [221 222} < (26)

where p € RY, g € RP, 11 € RIX9, Tpy € RPXP, X1 € RI%P, and T = X, € RPXY,
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Factor Analysis

@ Lemma [7]:
Lemma
Rd E I“X|Z =p + 21222_21(21' - I"‘O)» (27)
RI*9 5%, |, = %11 — T1nX,, Eo, (28)

and likewise for zj|x; ~ N (5, Z;|x):

RP > IJ’z|x = Mo + 22121_11()(1' - I"L): (29)
RPXP 5 }:Z|X = Xy — 22121_11212. (30)
4
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Factor Analysis
@ According to Eq. (20), we have Xy = X, = I. According to Eq. (19), we have:
i = =E[(xi — p)(xi — p) ']
=E[(Azi+p+e—p)(Azi+p+e—p)']
= IFJ[I\Z,—Z,TI\T + ez,TI\T + I\z,-eT + eeT]
= AE[z;z] INT +E[€]E[z;]]TAT + AE[z,]E[€] T + E[ee ]

DAINT 4010+ W =AAT + W, (31)

where (a) is because of Eqs. (20) and (21).
@ Moreover, we have:

Y12 = X = El(xi — p)(2i — pg) "]
DAz + 1+ e—p)(z —0)7]

(b) T

= NE[z;z]] + E[e]E[z] ] = Al 4+ (007) = A, (32)

where (a) is because of Eqs. (19) and (20) and (b) is because z; and € are independent.
@ We also have Xjp; = ZE = AT. Therefore:

] ([a] [ 00) -
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Factor Analysis

@ Hence, the marginal distribution of data point x; is:
P(x;) = P(x; | A, 1, W) = N (11, AT + W), (34)

According to Egs. (29) and (30) [Lemma], the posterior or the conditional distribution of
latent variable given data is:

a(zi) 2 B(z; | xi) = Bz | xi, A, 11, W) (35)
= N(Bzpx Zz1x)s
where:
RP 3 pryp = AT (AT + W) 71 (x; — ), (36)
RP*P S E, . ==1—ANT (AT +W)7IA, (37)

@ Recall that the conditional distribution of data given the latent variable, i.e. P(x; | z;),
was introduced in Eq. (15):

P(x;|z;) = P(xi | z;, N, p, W) = N(Az; + p, W).

If data {x;}7_, are centered, i.e. =0, the marginal of data, Eq. (34), and the likelihood
of data, Eq. (15), become:

B(x; | A, W) = N(0, W + ART), (38)
]P(X,'|Z,',/\,‘U)ZN(I\Z,',‘U), (39)
respectively. In some works, people center the data as a pre-processing to factor analysis.
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Factor Analysis

@ We can find the parameters A and W using Expectation Maximization.

@ See our tutorial “Factor analysis, probabilistic principal component analysis, variational

inference, and variational autoencoder: Tutorial and survey” [8] for the details of EM
steps in factor analysis.
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Probabilistic Principal Component Analysis

@ Probabilistic PCA (PPCA) (1997-1999) [9, 10] is a special case of factor analysis where
the variance of noise is equal in all dimensions of data space with covariance between
dimensions, i.e.:

v =2l (40)

@ In other words, PPCA considers an isotropic noise in its formulation. Therefore, Eq. (21)
is simplified to:

P(e) = N(0,021). (41)

@ Because of having zero covariance of noise between different dimensions, PPCA assumes
that the data points are independent of each other given latent variables.

@ PPCA can be illustrated as a graphical model, where the visible data variable is
conditioned on the latent variable and the isotropic noise random variable.

e @)
N(0,0%I)
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Probabilistic Principal Component Analysis

@ As PPCA is a special case of factor analysis, it also is solved using EM. Similar to factor
analysis, it can be solved iteratively using EM [9].

@ However, one can also find a closed-form solution to its EM approach [10]. Hence, by
restricting the noise covariance to be isotropic, its solution becomes simpler and
closed-form.

@ We can find the parameters A and o using Expectation Maximization.

@ See our tutorial “Factor analysis, probabilistic principal component analysis, variational
inference, and variational autoencoder: Tutorial and survey” [8] for the details of EM
steps in PPCA.
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Acknowledgment

@ Some slides are based on our tutorial paper: “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and
survey” [8]

@ Some slides of this slide deck are inspired by teachings of deep learning course at the
Carnegie Mellon University (you can see their YouTube channel).

@ Factor analysis in sklearn: https://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.FactorAnalysis.html
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