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Variational Inference 27
\ p(ﬂ ; 8)

@ Consider a dataset {x;}7 ;. Assume that every data point x; € RY is generated from a
latent variable z; € RP. This latent variable has a prior distribution IP’(Z ). According to

Bayes' rule, we have: ‘\Lgly
' Lomer € /* ?U\ > )
ghkls (x, |z,)IP 1)

— \(*\)7‘ )

@ Let P(z;) be an arbitrary distribution denoted by q(z;). Syppose the parameter of
conditional distribution of z; on x; is denoted by 8; hence, R(z; | x;) = P(z; | x;, 8).
Therefore, we can say: fﬂaf

P(x; | z;, z;|0)
x| Bl 0) 4 IX'OD e
1

O =L X 2 Kot

ik, ,
Vo e

Factor Analysis, Probabilistic PCA, and Varia; 3/27




Variational Inference «_e\:(ﬁ \,E\Qf) E’f}ﬁ, ”7‘>Q

@ Consider the Kullback-Leibler (KL) divergence [1] between the prior probability of the
latent variable and the posterior of the latent variable
(KL (a(z) | P(zi] x1,0)) 2 / a(2;) log ( i)dz-
a(z1) (log(a(2) — log(B(z; | x:, 6))) dz; ()
—_—

—_—

(i)/q(Zi)('Og(q(Zi))—|°g(P(Xi|2f79))—':g(IP’(Zi|9))+|°g(P(Xi|9))) dz;

®) log(P(x;|0)) + / q(z;) (log(q(z;)) — log(P(x; | z;,0)) — log(P(z; | 8))) dz;
N (’_/- . \ —J
- |og(]P’(x,—|0))+/q(zl. _q(z) /\

= log(P(xi]6)) + | a(zi
v .
= log(P(x; | 0)) + KL(q(z;) [| P(x;, 2| 8)),
- L
where (a) is for definition of KL divergence and (b) is because log(P(x; | 0)) is
independent of z; and comes out of integral and f dz; = 1.

@ Hence:
3¢ log(P(x;|0)) =KL(a(zi) || P(zi | x;, 0)
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Variational Inference / /
o Wei;und: /

log(P(x; | 0)) =KL(q(z;) | P(z; | xi, 0)) KL(q(zi) || P(xi, i | ).
@ We define the Evidence Lower Bound (ELBO) as:

L(q,0) :=QKL(q(z) [| P(xi,z; | 9)). (4)
. < L£(9.0)=QKL(g ) -
O: K—\

T —
K log(P(x;|6)) = KL(q(2)) || P(z: | x:. 0)) + £(q.6).

@ Therefore: /‘_"Q/Z’_]
,)ﬁr@ oe(2(x,|0))
+«<

.W

@ As the second term is negative with its minus, the ELBO is a lower bound on the log
likelihood of data:

7 —\
wlCeofosceio) [~ o
The likelihood P(x; | @) is also referred to as the evidence. //m

@ Note that this lower bound gets tight when:

———
KL(q(z)) || P(z; | xi,0)) | (5)

N\ ¢ > t
£(q.0) ~ log(P(x;| 0)) = 0< KL(q(z) || P(z|x;.0)) Z0_
= q(zi) = P(z|xi,6). )
e ——
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Variational Inference

@ We found:

——

KL(g(z) I P(z; | x;,0)) HL(q, ).

A
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Expectation Maximization in Variational Inferenc;

/1‘
@ According to MLE, we want to maximize the log-likelihood of data. According to Eq. (6):

maximizing the ELBO will also maximize the log-likelihood.

@ The Eq. (6) holds for any prior distribution q. We want to find the best distribution to
maximize the lower bound.

@ Hence, EM for variational inference is performed iteratively as:

E-step; zﬁ = argn&%( L(q,007Y), = (8)

M-step: ::argr@ L(g_(:),e), = (9)

——

where t denotes the iteration index.
L denotes the iteration index.
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Expectation Maximization in Variational Inference
@ E-step in EM for Variational Inference: The E-step is:

—_— ——

« £(q,0 D) 2 maxlog(P(x; | 6¢1)) +’max‘(f\KL(q(z,-) [ P(z; | x;, 6¢1)))
et e g e e el )

= maxlog(B(x; | 0°~)) + min KL (a(z7) || B(z; | x;, 6¢~1)).
S SNy s

@ The second term is always non-negative; hence, its minimum is zero:
—_ o7 -

~
KL(4(21) | B(zi | x1,0¢7D)) 20 = q(z)) = Pz | x;, 00 V), &
——————— .
which was already found in Eq. (7) Thus, the E-step assigns:

A\ 9 (e) = Bl |xi, 00 D). (10)

@ In other words, in the figure, it pushes the middle line toward the above line by
maximizing the ELBO.

KL(q(zi) | P(zi | @i, 0))
LoAkehhood IOg(P(mi | B))

I

L(q,0)

A
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Expectation Maximization in Variational Inference
@ M-step in Wa]_lnfemnm; The M-step is:

— T
m) ® max (ZKL(4(2) | B(xi. 21 |6))

1
t) q (zl)
9/ q( (z) Iog(IF’(X,,Z, |0))dz,-]
- / (e tog(Blx; 21 10)) oz, ~ g [ o) tos(e()) iz,
‘_\___/—\_/‘
K

where (a) is for definition of KL divergence.

@ The second term is constant w.r.t. 8. Hence:

0 (' — 1
g £(¢1),6) = max [ q(0(z:) log(B(xi, 21| 0)) dz;
6 L [?] ~—

(a)
2 mé"‘XIENq(ﬂ(z,-) [Iog P(x;, z; | 0)} s
—

where (a) is because of definition of expectation. Thus, the M:step assigns:

o) <—.nax E_ 9z, [log P(xi, 2; | 0)]. (11)
|
O
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Expectation Maximization in Variational Inference
@ We found:

<« o) arg meax ENq(f)(z,-) [Iog P(x;, z; | 0)]

@ In other words, in the figure, it pushes the above line higher.
KL(q(z:) || P(zi | xi,0))
Gz ™47
Log/;ikenhood @g(P(mi|9)) 7.
A
f-’ﬂUfTELBo

L(q,0)

A

@ The E-step and M-step together somehow play a game where the E-step tries to reach
the middle line (or the ELBO) to the log-likelihood and the M-step tries to increase the
above line (or the log-likelihood). This procedure is done repeatedly so the two steps help
each other improve to higher values.

@ To summarize, the EM in variational inference is:

q'(z)) < P(z; | x;,007Y), (12)
0 « arg max E gz [logP(x;,z; | 6)]. (13)
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Expectation Maximization in Variational Inference

@ It is noteworthy that, in variational inference, sometimes, the parameter 0 is absorbed into
. -
the latent variable z;.

@ According o the chain rule, we have:

—_—

P(X,',Z,',B) = ]P)(X,' ‘ Z,',B)]P(Z,'|0) P(G)

@ Considering the term P(z; | ) P(0) as one probability term, we have:
N
P(x;, zj) = P(x; | z;) P(z;),
| S ]

where the parameter 0 disappears because of absorption.
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Factor Analysis /@}\

£

Factor analysis [2, 3, 4, 5] is one o@h mplest and most fundamental generative models.
—_

Factor analysis assumes that every data point x; € R? is generated from a latent variable
z; € RP. The latent variable is also referred to as the latent factor; hence, the name of

Tactor analysis comes from the fact that it analyzes the latent factors.

In factor analysis, we assume that the data point x; is obtained through the following
steps: (1) by linear projection of the p-dimensional z; onto a d-dimensional space by
projection matrix A € R7%P, then (2) applying some linear translation, and finally (3)
adding a Gaussian noisé € € RY with covariance matrix W € R7X9_

Note that as the noises in different dimensions are independent, the covariance matrix W
is diagonal.

—_
Factor analysis can be illustrated as a graphical model [6] where the visible data variable
is conditioned on the latent variable and the noise random variable.
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Factor Analysis

@ For simplicity, the prior distribution of the latent variable can be assumed to be a

multivariate Gaussian distribution: /
-_—
J/ 1 (Zi—HO)Tzo_l(zi—P'o)
P(z;) = N(z; X)) = ———exp (— , 14
¥ P =Nl bo To) = s e ; ) s

where py € RP and £y € RPXP are the mean and the covariance matrix of z; and |.| is
the determinant of matrix. =

@ x; is obtained through (1) the linear projection of z; by A € R?*P, (2) applying some
linear translation, and (3) adding a Gaussian noise € € R? with covariance W € RI*¢,
—_—

@ Hence, the data point x; has a conditional multivariate Gaussian distribution given the

W its conditional likelihood is:

3 B(xi| 2) = Bxi | 20, Ao W) = N(Rz) § W), <—  (15)
xi|zj) =P(x; |z, A\, p, = zi+p, W),
| | —_

where g, which is the translation vector, is the mean of data {x;}7_;:

1 n
RY> p:= - E X;. (16)
1 i=1
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Factor Analysis (%) L=\

@ The marginal distribution of x; is:

—_—

A
of [EL - i g

Plxs | s, W) = /P(x,|z,,/\ 1, W) Bz | g, o) dz;
N~

I,
‘N(/\ﬁ(+u,w+/\zo/ﬁ) /\5, /\ZZE /\T(17)
f/\/(_u_,ww\/\ ), €&— L%\L—f/\_ﬁ" (18)

where RY 5 [i := Apg + p, RI%X9 5 A:=AxX (1/2), and (a) is because mean is linear and
variance is quadratic so thé mean anm f projection are applied linearly and
quadratically, respec Y, respectively.

@ ‘As the mean p and covariance A are needed to be learned, we can absorb pg and X into
p and A and assume thatn

@ In summary, factor analysis assumes every data point x; € R? is obtained by projecting a
latent variable z; € RP onto a d-dimensional space by projection matrix A € RY%P and
translating it by p € R? and finally adding some Gaussian noise € € RY (whose

dimensions are independent) as: E‘(Y ) @
Ll

Xj 1= I\z, € q 19)
i) SP(zi) = N(0.1), @ (20)
]P’(e) N(O wv). 6 /4,( (21)
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Factor Analysis

@ The joint distribution of x; and z; is:

2.

X
vii= (5] ~ Ny 5. (22)
R S—;
@ The expectation of x; is:
Py 6
(19 v £
Eix] 2 Bz + o+ €] = ABlz) + p + ] @ o, (23)

~~— S T S T U U
where (a) is because of Egs. (20) and (21).

@ Hence:
— (] @ [
Koy = Lt} a ’ -

where (a) is because of Eqs. (20) and (23).
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Factor Analysis

@ Lemma:

Lemma

Consider two random variables x; € R? and z; € RP and let y; = [x;'—7 z;'— T € RItP. Assume

that x; and z; are jointly multivariate Gaussian; hence, the variable y; has a multivariate
Gaussian distribution, i.e., y; ~ N(p,, Zy). The mean and covariance can be decomposed as:

—y =l gl €RT, (25)

_[Eun Ep (d+p)x (d+p)
>t = [221 222} = . (26)

where p € RY, g € RP, 11 € RIX9, Tpy € RPXP, X1 € RI%P, and T = X, € RPXY,
Ho = - BT y
| J
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Factor Analysis

@ Lemma [7]:
=S
Lemma {Y
EB Bz =+ 125 (2 — o), (27)
RIS Y, =% — ¥y Ty, (28)
and likewise for zj|x; ~ N (|, Z7|x):
RP > IJ’z|x = K + z2121_11()“ - ”‘L): (29)
A 1
MB zz|x =y — z21211 X0, (30)
v

T
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Factor Analysis Sy = E@- AL (a1
@ According to Eq. (20), we have Xy = X, = I. According to Eq. (19), we have:
+ Tu = L = E[6)- p(xi - )] T

=E[Azi+tpte—p)Azi +pte—p

= IFJ[I\Z-ZTI\T + EZTI\T + I\z-eT + eeT]

= AE[z;z TINT +E[e]E[z)] AT + AE[z]E[e] T + E[ee ]

@ — N~ q\ n N~

= ALAT+0+2+W:AAT +w,

where (a) is because of Eqs. (20) and (21). (/((6’/2)(6’/é }-r)
L _J

@ Moreover, we have:

(31)

AN AATS
* T =Te=E[(xi —p)(zi —mo) ']

D El(her + e (=0

@ AE[z;z] ] + E[e]Elz] ] = Al +(007) = A, (32)

where (a) is because of Eqgs. (19 ) and (20) and (b) is because z; and € are independent.

@ We also have ¥y = X, T =X = I\ . Therefore:
_k @# (33)
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Factor Analysis
@ Hence, the marginal distribution of data point x; is:
d B(x) = B(xi | A W) = N MT +0). S=——  (39)

According to Egs. (29) and (30) [Lemma], the posterior or the conditional distribution of
latent variable given data is:

a(z) 2 B XY = Pla xR ) (35)
= N(Bzpx Zz1x)s
where:
RP 3 pryp = AT (AT + W) 71 (x; — ), (36)
¥ i RP*P S E, . ==1—ANT (AT +W)7IA, (37)

@ Recall that the conditional distribution of data given the latent variable, i.e. P(x; | z;),
was introduced in Eq. (15): I

K P(x;|2z) = P(x; | zi, A, 1, W) = N(Az; £70W).

—_
If data {x;}7 , are centered, i.e. pu =0, the marginal of data, Eq. (34), and the likelihood
of data, Eq. (I5), become:

P(x; | A, W) = N(0,W + ANT), (38)
]P(X,'|Z,',A,W):N(I\Z,',‘U), (39)

respectively. In some works, people center the data as a pre-processing to factor analysis.
SNRCT The T4T9 a5 9 premprocessing to 1acthor anaysis.
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Factor Analysis

@ We can find the parameters A and W using Expectation Maximization.
parametel> 2 ane — -xpectation aximizatl

@ See our tutorial “Factor analysis, probabilistic principal component analysis, variational

inference, and variational autoencoder: Tutorial and survey” [8] for the details of EM
- . ST, Uora ANt SV Ao =
steps in factor analysis.

—_—
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Probabilistic Principal Component Analysis

@ Probabilistic PCA (PPCA) (1997-1999) [9, 10] is a special case of factor analysis where
the variance of noise is equal in all dimensions of data space with covariance between
dimensions, i.e.:

v —lclr?l. &« (40)

@ In other words, PPCA considers an isotropic noise in its formulation. Therefore, Eq. (21)
is simplified to:

PQ) = N(©.0%1), (a)

@ Because of having zero covariance of noise between different dimensions, PPCA assumes
that the data points are independent of each other given latent variables.

@ PPCA can be illustrated as a graphical model, where the visible data variable is
conditioned on the latent variable and the isotropic noise random variable.

e i)
N(0,0%I)

.__,rc“.
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Probabilistic Principal Component Analysis

@ As PPCA is a special case of factor analysis, it also is solved using EM Similar to factor
analysis, it can be solved iteratively using EM [9]. <—
— ) " 5 =

@ However, one can also find a closed-form solution to its EM approach [10]. Hence, by
restricting the noise covariance to be isotropic, its solution becomes simpler and
closed-form.

@ We can find the parameters A and o using Expectation Maximization.

@ See our tutorial “Factor analysis, probabilistic principal component analysis, variational
inference, and variational autoencoder: Tutorial and survey” [8] for the details of EM
steps in PPCA.
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Acknowledgment

@ Some slides are based on our tutorial paper: “Factor analysis, probabilistic principal
component analysis, variational inference, and variational autoencoder: Tutorial and
survey” [9]

@ Some slides of this slide deck are inspired by teachings of deep learning course at the
Carnegie Mellon University (you can see their YouTube channel).

— itk L

@ Factor analysis in sklearn: https://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.FactorAnalysis.html
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