
Boosting

Statistical Machine Learning (ENGG*6600*08)

School of Engineering,
University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh
Fall 2023

Boosting 1 / 35

Definition

Boosting 2 / 35

Definition

Boosting is a meta algorithm which can be used with any model (classifier, regression,
etc).

For binary classification, for example, if we use boosting with a classifier even slightly
better than flipping a coin, we will have a strong classifier (we will explain the reason
later). Thus, we can say boosting makes the estimation or classification very strong. In
other words, boosting addresses the question whether a strong classifier can be obtained
from a set of weak classifiers [1, 2].

Boosting 3 / 35

Definition

The idea of boosting is to learn k models in a
hierarchy where every model gives more
attention (larger weight) to the instances
misclassified (or estimated very badly) by the
previous model.

Finally, the overall estimation or classification
is a weighted summation (average) of the k
estimations. For an instance x , we have:

f̂ (x) =
k∑

j=1

αj hj (x). (1)

If the model is classifier, we should probably
use sign function:

f̂ (x) = sign
(k∑

j=1

αjhj (x)
)
, (2)

which is equivalent to majority voting among
the trained classifiers.

Boosting 4 / 35

Definition
Different methods have been proposed for boosting, one of the most well-known ones is
AdaBoost (Adaptive Boosting) (1996) [3].

The algorithm of AdaBoost for binary classification is shown below.

In this algorithm, Lj is the cost function minimized in the j-th model hj , the I(.) is the
indicator function which is one and zero if its condition is and is not satisfied, respectively,
and wi is the weight associated to the i-th instance for weighting it as the input to the
next layer of boosting.

Note that the cost in AdaBoost is:

Lj =

∑n
i=1 wi I(yi ̸= hj (x i))∑n

i=1 wi
, (3)

which makes sense because it gets larger if the observations of more instances are
estimated incorrectly.

Boosting 5 / 35

Definition

Here, we can have several cases which help us understand the interpretation of the
AdaBoost algorithm:

If an instance is correctly classified, the I(yi ̸= hj (x i)) is zero and thus the wi will be still
wi without any change. This makes sense because the correctly classified instance should
not gain a significant weight in the next layer of boosting.

Boosting 6 / 35

Definition

If an instance is misclassified, the I(yi ̸= hj (x i)) is one. In this case, we can have two
sub-cases:

▶ If the classifier which classified that instance was a bad classifier, its cost would be
like flipping a coin, i.e., Lj = 0.5. Therefore, we will have αj = log(1) = 0 and
again the wi will still be wi without any change. This makes sense because we
cannot trust the bad classifier whether the instance is correctly or incorrectly
classified and thus we should not make any decision based on that.

▶ If the classifier which classified that instance was a good classifier, then we have
Lj ̸= 0.5 and as we also have I(yi ̸= hj (x i)) = 1, the weight will change as
wi := wi exp(αj). This also is intuitive because the previous model in the boosting
was a good classifier and we can trust it and that good classifier could not classify
the instance correctly. Therefore, we should notice that instance more in the next
model in the boosting hierarchy.

Boosting 7 / 35

Theory Based on
Additive Models

Boosting 8 / 35

Theory Based on Additive Models
Additive models [4] can be used to explain why boosting works [5, 6]. In an additive
model, we map the data as x 7→ ϕj (x), ∀j ∈ {1, . . . , k} and then add them using some
weights βj ’s:

ϕ(x) =
k∑

j=1

βj ϕj (x). (4)

A well-known example of the additive model is Radial Basis Function (RBF) neural
network (here with k hidden nodes) which uses Gaussian mappings [7, 8].

Now, consider a cost function for an instance as:

L(y , h(x)) := exp(−y h(x)), (5)

where y is the observation or label for x and h(x) is the model’s estimation of y . This
cost is intuitive because when the instance is misclassified, the signs of y and h(x) will be
different (so y h(x) < 0) and the cost will be large, while in case of correct classification,
the signs are similar (so y h(x) > 0) and the cost is small.

If we add up the cost over the n training instances, we have:

Lt(y , h(x)) :=
n∑

i=1

exp(−yi h(x i)), (6)

where Lt denotes the total cost.

Boosting 9 / 35

Theory Based on Additive Models
In Eq. (4), ϕ(x) =

∑k
j=1 βj ϕj (x), if we rename the mapping to h(x), which is the model

used in boosting, we will have:

h(x) =
k∑

j=1

βj hj (x). (7)

We can write this expression as a forward stage-wise additive model [5, 6] in which we
work with the models one by one where we add up the previously worked models:

fq−1(x) =
q−1∑
j=1

βj hj (x), (8)

fq(x) = fq−1(x) + βq hq(x), q ≤ k, (9)

where h(x) = fk (x).
Therefore, minimizing the cost, i.e., Eq. (6), Lt(y , h(x)) :=

∑n
i=1 exp(−yi h(x i)), for the

j-th model in the additive manner is:

min
βj ,hj

n∑
i=1

exp
(
− yi [fj−1(x i) + βj hj (x i)]

)
= min

βj ,hj

n∑
i=1

exp(−yi fj−1(x i)) exp(−yi βj hj (x i)).

Boosting 10 / 35

Theory Based on Additive Models
We had:

min
βj ,hj

n∑
i=1

exp
(
− yi [fj−1(x i) + βj hj (x i)]

)
= min

βj ,hj

n∑
i=1

exp(−yi fj−1(x i)) exp(−yi βj hj (x i)).

The first term is a constant with respect to βj and hj so we name it by wi :

wi := exp(−yi fj−1(x i)). (10)

Thus:

min
βj ,hj

n∑
i=1

wi exp(−yi βj hj (x i)).

As in binary AdaBoost, we have ±1 for yi and hj , we can say:

min
βj ,hj

exp(−βj)
n∑

i=1

wi I(yi = hj (x i)) + exp(βj)
n∑

i=1

wi I(yi ̸= hj (x i))

(a)
= min

βj ,hj
exp(−βj)

n∑
i=1

wi − exp(−βj)
n∑

i=1

wi I(yi ̸= hj (x i)) + exp(βj)
n∑

i=1

wi I(yi ̸= hj (x i)),

where (a) is because:

n∑
i=1

wi I(yi = hj (x i)) =
n∑

i=1

wi −
n∑

i=1

wi I(yi ̸= hj (x i)).

Boosting 11 / 35

Theory Based on Additive Models
We had:

min
βj ,hj

exp(−βj)
n∑

i=1

wi − exp(−βj)
n∑

i=1

wi I(yi ̸= hj (x i)) + exp(βj)
n∑

i=1

wi I(yi ̸= hj (x i)).

For the sake of minimization, we take the derivative:

∂Lt

∂βj
= − exp(−βj)

n∑
i=1

wi + exp(−βj)
n∑

i=1

wi I(yi ̸= hj (x i))

+ exp(βj)
n∑

i=1

wi I(yi ̸= hj (x i))
set
= 0,

which gives:

=⇒ (exp(−βj) + exp(βj))×
∑n

i=1 wi I(yi ̸= hj (x i))∑n
i=1 wi

= exp(−βj)

(3)
=⇒ (exp(−βj) + exp(βj)) Lj = exp(−βj)

=⇒ Lj =
exp(−βj)

exp(−βj) + exp(βj)
=⇒ exp(2βj) =

1− Lj

Lj
=⇒ 2β = log(

1− Lj

Lj
)

(a)
=⇒ αj = 2βj , (11)

where (a) is because of the formula of αj in the Algorithm.

Boosting 12 / 35

Theory Based on Additive Models
According to Eqs. (8), (9), and (10),

fq−1(x) =
q−1∑
j=1

βj hj (x),

fq(x) = fq−1(x) + βq hq(x), q ≤ k,

wi := exp(−yi fj−1(x i)).

we have:

wi := wi exp(−yi βj hj (x i)). (12)

As we have yi hj (x i) = ±1, we can say:

− yi hj (x i) = 2 I(yi ̸= hj (x i))− 1. (13)

According Eqs. (11), αj = 2βj , (12), and (13), we have:

wi := wi exp
(
αj I(yi ̸= h(x i))

)
exp(−βj), (14)

which is equivalent to the formula of wi in the Algorithm with a factor of exp(−βj). This
factor does not have impact on whether the instance is correctly classified or not.

Boosting 13 / 35

Upper Bound on the
Generalization Error of
Boosting

Boosting 14 / 35

Upper Bound on the Generalization Error of Boosting
There is an upper bound on the generalization error of boosting [9]. In binary boosting,

we have ±1 for yi and also the sign of f̂ (x i) is important; therefore, yi f̂ (x i) < 0 means
that we have error for estimating the i-th instance. Thus, for an error, we have:

yi f̂ (x i) ≤ θ, (15)

for a θ > 0. Recall the Eq. (1):

f̂ (x) =
k∑

j=1

αj hj (x).

We can normalize this equation because the sign of it is important:

f̂ (x i) =

∑k
j=1 αj hj (x i)∑k

j=1 αj

. (16)

According to Eqs. (15) and (16), we have:

yi f̂ (x i) ≤ θ ⇐⇒ yi

k∑
j=1

αj hj (x i) ≤ θ
k∑

j=1

αj

⇐⇒ −yi

k∑
j=1

αj hj (x i) + θ
k∑

j=1

αj ≥ 0 ⇐⇒ exp
(
− yi

k∑
j=1

αj hj (x i) + θ

k∑
j=1

αj

)
≥ 1.

Boosting 15 / 35

Upper Bound on the Generalization Error of Boosting
We found:

yi f̂ (x i) ≤ θ ⇐⇒ exp
(
− yi

k∑
j=1

αj hj (x i) + θ
k∑

j=1

αj

)
≥ 1.

Therefore, in terms of probability, we have:

P(yi f̂ (x i) ≤ θ) = P
(
exp

(
− yi

k∑
j=1

αj hj (x i) + θ
k∑

j=1

αj

)
≥ 1

)
. (17)

According to the Markov’s inequality which is (for a > 0 and a random variable X):

P(X ≥ a) ≤
E(X)

a
, (18)

and Eq. (17), we have (take a = 1 and the exponential term as X in Markov’s inequality):

P(yi f̂ (x i) ≤ θ) = P
(
exp

(
− yi

k∑
j=1

αj hj (x i) + θ
k∑

j=1

αj

)
≥ 1

)
(18)

≤ E
(
exp

(
− yi

k∑
j=1

αj hj (x i) + θ
k∑

j=1

αj

))

Boosting 16 / 35

Upper Bound on the Generalization Error of Boosting

Continuing:

P(yi f̂ (x i) ≤ θ) = P
(
exp

(
− yi

k∑
j=1

αj hj (x i) + θ
k∑

j=1

αj

)
≥ 1

)
(18)

≤ E
(
exp

(
− yi

k∑
j=1

αj hj (x i) + θ
k∑

j=1

αj

))
(a)
= exp

(
θ

k∑
j=1

αj

)
E
(
exp

(
− yi

k∑
j=1

αj hj (x i)
))

(b)
=

1

n
exp

(
θ

k∑
j=1

αj

) n∑
i=1

exp
(
− yi

k∑
j=1

αj hj (x i)
)
, (19)

where (a) is because the expectation is with respect to the data, i.e., x i and yi and (b) is
according to the definition of expectation.

Boosting 17 / 35

Upper Bound on the Generalization Error of Boosting

Recall the formula of wi in the Algorithm:

w
(j+1)
i = w

(j)
i exp

(
αj I(yi ̸= hj (x i))

)
,

where j denotes the iteration index. It can be restated as:

w
(j+1)
i = w

(j)
i exp

(
− yi αj hj (x i)

)
,

because yi = ±1 and hj (x i) = ±1.

It is not harmful to AdaBoost if we use the normalized weights:

w
(j+1)
i =

w
(j)
i exp

(
− yi αj hj (x i)

)
zj

, (20)

where:

zj :=
n∑

i=1

w
(j)
i exp

(
− yi αj hj (x i)

)
. (21)

Boosting 18 / 35

Upper Bound on the Generalization Error of Boosting

We had:

w
(j+1)
i =

w
(j)
i exp

(
− yi αj hj (x i)

)
zj

,

Considering that w
(1)
i = 1/n, we can have recursive expression for the weights:

w
(k+1)
i =

w
(k)
i exp

(
− yi αk hk (x i)

)
zk

= w
(1)
i ×

1

zk × · · · × z1
× exp

(
− yi αk hk (x i)

)
× · · · × exp

(
− yi α1 h1(x i)

)
=

1

n
×

1∏k
j=1 zj

×
k∏

j=1

exp
(
− yi αj hj (x i)

)
=

1

n
×

1∏k
j=1 zj

× exp
(
− yi

k∑
j=1

αj hj (x i)
)

=⇒
1

n
exp

(
− yi

k∑
j=1

αj hj (x i)
)
=

(k∏
j=1

zj

) n∑
i=1

w
(k+1)
i . (22)

Boosting 19 / 35

Upper Bound on the Generalization Error of Boosting

We found (Eq. (22)):

1

n
exp

(
− yi

k∑
j=1

αj hj (x i)
)
=

(k∏
j=1

zj

) n∑
i=1

w
(k+1)
i .

We continue the Eq. (19):

P(yi f̂ (x i) ≤ θ) ≤
1

n
exp

(
θ

k∑
j=1

αj

) n∑
i=1

exp
(
− yi

k∑
j=1

αj hj (x i)
)

(22)
= exp

(
θ

k∑
j=1

αj

) (k∏
j=1

zj

) n∑
i=1

w
(k+1)
i .

Boosting 20 / 35

Upper Bound on the Generalization Error of Boosting
We found:

P(yi f̂ (x i) ≤ θ) ≤ exp
(
θ

k∑
j=1

αj

) (k∏
j=1

zj

) n∑
i=1

w
(k+1)
i .

According to Eqs. (20) and (21),

w
(j+1)
i =

w
(j)
i exp

(
− yi αj hj (x i)

)
zj

,

zj :=
n∑

i=1

w
(j)
i exp

(
− yi αj hj (x i)

)
,

we have:

n∑
i=1

w
(j+1)
i =

∑n
i=1 w

(j)
i exp

(
− yi αj hj (x i)

)∑n
i=1 w

(j)
i exp

(
− yi αj hj (x i)

) = 1.

Therefore:

∴ P(yi f̂ (x i) ≤ θ) ≤ exp
(
θ

k∑
j=1

αj

) (k∏
j=1

zj

)
. (23)

Boosting 21 / 35

Upper Bound on the Generalization Error of Boosting
On the other hand, according to Eq. (21), zj :=

∑n
i=1 w

(j)
i exp

(
− yi αj hj (x i)

)
, we have:

zj =
n∑

i=1

w
(j)
i exp

(
− yi αj hj (x i)

)
=

n∑
i=1

w
(j)
i exp(−αj) I(yi = hj (x i)) +

n∑
i=1

w
(j)
i exp(αj) I(yi ̸= hj (x i))

= exp(−αj)
n∑

i=1

w
(j)
i I(yi = hj (x i)) + exp(αj)

n∑
i=1

w
(j)
i I(yi ̸= hj (x i)). (24)

Recall Eq. (20) for w j+1
i , i.e., w

(j+1)
i =

w
(j)
i exp

(
−yi αj hj (x i)

)
zj

. This is in the range [0, 1]

and its summation over error cases can be considered as the probability of error:

n∑
i=1

w
(j)
i I(yi ̸= hj (x i)) = P(yi ̸= hj (x i))

(a)
= Lj , (25)

where (a) is because the Eq. (3), Lj =
∑n

i=1 wi I(yi ̸=hj (x i))∑n
i=1 wi

, is the cost which is the

probability of error. Therefore, the Eq. (24) becomes:

zj = exp(−αj) (1− Lj) + exp(αj) Lj .

Boosting 22 / 35

Upper Bound on the Generalization Error of Boosting

Recall the formula of αj in the Algorithm, i.e., αj = log(
1−Lj
Lj

). Scaling it is not harmful

to AdaBoost:

αj =
1

2
log(

1− Lj

Lj
). (26)

Therefore, we can have:

zj = exp(−αj) (1− Lj) + exp(αj) Lj

= exp(−
1

2
log(

1− Lj

Lj
)) (1− Lj) + exp(

1

2
log(

1− Lj

Lj
)) Lj

= exp(log(

√
Lj

1− Lj
)) (1− Lj) + exp(log(

√
1− Lj

Lj
)) Lj

=

√
Lj

1− Lj
(1− Lj) +

√
1− Lj

Lj
Lj =

√
Lj (1− Lj) +

√
Lj (1− Lj)

=⇒ zj = 2
√

Lj (1− Lj). (27)

Boosting 23 / 35

Upper Bound on the Generalization Error of Boosting
We found Eqs. (26), (27), and (23):

αj =
1

2
log(

1− Lj

Lj
), zj = 2

√
Lj (1− Lj), P(yi f̂ (x i) ≤ θ) ≤ exp

(
θ

k∑
j=1

αj

) (k∏
j=1

zj

)
.

Plugging Eqs. (26) and (27) in Eq. (23) gives:

P(yi f̂ (x i) ≤ θ) ≤ exp
(1
2
θ

k∑
j=1

log(
1− Lj

Lj
)
) (

2k
k∏

j=1

√
Lj (1− Lj)

)

= 2k exp
(k∑

j=1

log((
1− Lj

Lj
)θ/2)

) k∏
j=1

√
Lj (1− Lj)

= 2k
k∏

j=1

exp
(
log((

1− Lj

Lj
)θ/2)

) k∏
j=1

√
Lj (1− Lj)

= 2k
k∏

j=1

(
1− Lj

Lj
)θ/2

k∏
j=1

√
Lj (1− Lj) = 2k

k∏
j=1

√
(
1− Lj

Lj
)θLj (1− Lj),

which simplifies to the upper bound on the generalization error of AdaBoost [9]:

P
(
yi f̂ (x i) ≤ θ

)
≤ 2k

k∏
j=1

√
L1−θ
j (1− Lj)1+θ. (28)

Boosting 24 / 35

Upper Bound on the Generalization Error of Boosting
We found the upper bound on the generalization error of AdaBoost [9]:

P
(
yi f̂ (x i) ≤ θ

)
≤ 2k

k∏
j=1

√
L1−θ
j (1− Lj)1+θ,

where P
(
yi f̂ (x i) ≤ θ

)
is the probability that the generalization (true) error for the i-th

instance is less than θ > 0.

According to Eq. (3), Lj =
∑n

i=1 wi I(yi ̸=hj (x i))∑n
i=1 wi

, we have Lj ∈ [0, 1]. If we have:

Lj ≤ 0.5− ξ, (29)

where ξ ∈ (0, 0.5), the Eq. (28) becomes:

P
(
yi f̂ (x i) ≤ θ

)
≤ 2k

k∏
j=1

√
L1−θ
j (1− Lj)1+θ =

k∏
j=1

2
√

L1−θ
j (1− Lj)1+θ

=
k∏

j=1

√
22L1−θ

j (1− Lj)1+θ =
k∏

j=1

√
21−θL1−θ

j 21+θ(1− Lj)1+θ

=
k∏

j=1

√
(2Lj)1−θ(2(1− Lj))1+θ

(29)

≤
(√

(1− 2ξ)1−θ(1 + 2ξ)1+θ

)k

. (30)

Boosting 25 / 35

Upper Bound on the Generalization Error of Boosting
We found:

P
(
yi f̂ (x i) ≤

(√
(1− 2ξ)1−θ(1 + 2ξ)1+θ

)k

,

which is a very good upper bound because if θ < ξ, we have√
(1− 2ξ)1−θ(1 + 2ξ)1+θ < 1; thus, the probability of error, P

(
yi f̂ (x i) ≤ θ

)
, decreases

exponentially with k which is the number of models used in boosting.
This shows that boosting helps us reduce the generalization error and thus helps us avoid
overfitting. In other words, because of the bound on generalization error, boosting overfits
very hardly.
If ξ is a very small positive number, the Lj ≤ 0.5− ξ is a little smaller than 0.5, i.e.,
Lj ⪅ 0.5. As we are discussing binary classification in boosting, Lj = 0.5 means random
classification by flipping a coin. Therefore, for having the great bound of Eq. (30), having
weak base models (a little better than random decision) suffices. This shows the
effectiveness of boosting.
Note that a very small ξ means a very small θ because of θ < ξ; therefore, it means a very
small probability of error because of P

(
yi f̂ (x i) ≤ θ

)
.

It is noteworthy that both boosting and bagging can be seen as ensemble learning [10]
(or majority voting) methods which use model averaging [11, 12] and are very effective in
learning theory.
Moreover, both boosting and bagging reduce the variance of estimation [13, 9], especially
for the models with high variance of estimation such as trees [14].
In the above, we analyzed boosting for binary classification. A similar discussion can be
done for multi-class classification in boosting and find an upper bound on the
generalization error (see the appendix in [9] for more details).

Boosting 26 / 35

Boosting as Maximum
Margin Classifier

Boosting 27 / 35

Boosting as Maximum Margin Classifier

In another perspective, the found upper bound for boosting shows that boosting can be
seen as a method to increase (maximize) the margins of training error which results in a
good generalization error [15]. This phenomenon is the base for the theory of Support
Vector Machines (SVM) [16, 17].

In the following, we analyze the analogy between maximum margin classifier (i.e., SVM)
and boosting [9]. In addition to [9], some more discussions exist for upper bound and
margin of boosting [18, 19] to which we refer the interested readers.

Assume we have training instances {(x i , yi)}ni=1 where yi ∈ {−1,+1} for binary
classification. The two classes may not be linearly separable. In order to handle this case,
we map the data to higher dimensional feature space using kernels [20, 21], hoping that
they become linearly separable in the feature space. Assume h(x) is a vector which
non-linearly maps data to the feature space. Considering α as the vector of optimization
variables, the optimization problem [22] in SVM is [17, 9]:

maximize
α

minimize
{(x i ,yi)}ni=1

yi (α
⊤h(x i))

||α||2
. (31)

Note that yi = ±1 and α⊤h(x i) ≷ 0; therefore, the sign of yi (α
⊤h(x i)) determines the

class of the i-th instance.

Boosting 28 / 35

Boosting as Maximum Margin Classifier
Eq. (31) was:

maximize
α

minimize
{(x i ,yi)}ni=1

yi (α
⊤h(x i))

||α||2
.

On the other hand, the Eq. (16), f̂ (x i) =
∑k

j=1 αj hj (x i)∑k
j=1 αj

, can be written in a vector form:

f̂ (x i) =

∑k
j=1 αj hj (x i)∑k

j=1 αj

=
α⊤h(x i)

||α||1
, (32)

where h(x i) = [h1(x i), . . . , hk (x i)]
⊤ and α = [α1, . . . , αk]

⊤. Note that here, h(x i) = ±1

and αj is obtained from Eq. (26), αj =
1
2
log(

1−Lj
Lj

), or the formula of αj in the Algorithm.

The similarity between the Eq. (32) and the cost function in Eq. (31) shows that
boosting can be seen as maximizing the margin of classification resulting in a good
generalization error [9].

In other words, finding a linear combination in the high dimensional feature space having
a large margin between the training instances of the classes is performed in the two
methods.

Note that a slight difference is the type of norm which is interpretable because the
mapping to feature space in boosting is only to h(x i) = ±1 while in SVM, it can be any
number where the sign is important. Therefore, ℓ1 and ℓ2 norms are suitable in boosting
and SVM, respectively [9].

Boosting 29 / 35

Boosting as Maximum Margin Classifier

Another connection between SVM (maximum margin classifier) and boosting is that some
of the training instances are found to be most important instances, called support vectors
[17]. In boosting, also, weighting the training instances can be seen as selecting some
informative models [23] which can be analogous to support vectors.

Boosting 30 / 35

Acknowledgment

For more information on boosting in machine learning, see the book: Trevor Hastie,
Robert Tibshirani, Jerome H. Friedman, Jerome H. Friedman. “The elements of statistical
learning: data mining, inference, and prediction”. Vol. 2. New York: springer, 2009 [24].

Some slides are based on our tutorial paper: ”The Theory Behind Overfitting, Cross
Validation, Regularization, Bagging, and Boosting: Tutorial” [25]

Some slides of this slide deck are inspired by teachings of Prof. Ali Ghodsi at University of
Waterloo, Department of Statistics and Prof. Hoda Mohammadzade at Sharif University
of Technology, Department of Electrical Engineering.

Boosting 31 / 35

References

[1] M. Kearns, “Thoughts on hypothesis boosting,” Technical Report, Machine Learning class
project, pp. 1–9, 1988.

[2] M. Kearns and L. Valiant, “Cryptographic limitations on learning boolean formulae and
finite automata,” Journal of the ACM (JACM), vol. 41, no. 1, pp. 67–95, 1994.

[3] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm,” in
Proceedings of the Thirteenth International Conference on Machine Learning,
pp. 148â–156, Morgan Kaufman, San Francisco, 1996.

[4] T. J. Hastie and R. Tibshirani, “Generalized additive models,” Statistical Science, vol. 1,
no. 3, pp. 297–318, 1986.

[5] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression: a statistical view
of boosting,” The annals of statistics, vol. 28, no. 2, pp. 337–407, 2000.

[6] R. Rojas, “Adaboost and the super bowl of classifiers: a tutorial introduction to adaptive
boosting,” Freie University, Berlin, Technical Report, 2009.

[7] D. S. Broomhead and D. Lowe, “Multivariable functional interpolation and adaptive
networks,” Complex Systems, vol. 2, pp. 321–355, 1988.

[8] F. Schwenker, H. A. Kestler, and G. Palm, “Three learning phases for radial-basis-function
networks,” Neural networks, vol. 14, no. 4-5, pp. 439–458, 2001.

Boosting 32 / 35

References (cont.)

[9] R. E. Schapire, Y. Freund, P. Bartlett, and W. S. Lee, “Boosting the margin: A new
explanation for the effectiveness of voting methods,” The annals of statistics, vol. 26,
no. 5, pp. 1651–1686, 1998.

[10] R. Polikar, “Ensemble learning,” in Ensemble machine learning, pp. 1–34, Springer, 2012.

[11] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky, “Bayesian model averaging:
a tutorial,” Statistical science, pp. 382–401, 1999.

[12] G. Claeskens and N. L. Hjort, Model selection and model averaging.
Cambridge Books, Cambridge University Press, 2008.

[13] L. Breiman, “Arcing classifier (with discussion and a rejoinder by the author),” The annals
of statistics, vol. 26, no. 3, pp. 801–849, 1998.

[14] J. R. Quinlan, “Bagging, boosting, and c4.5,” in AAAI/IAAI Conference, vol. 1,
pp. 725–730, 1996.

[15] B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin
classifiers,” in Proceedings of the fifth annual workshop on Computational learning theory,
pp. 144–152, ACM, 1992.

[16] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning, vol. 20, no. 3,
pp. 273–297, 1995.

Boosting 33 / 35

References (cont.)

[17] C. J. Burges, “A tutorial on support vector machines for pattern recognition,” Data mining
and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998.

[18] L. Wang, M. Sugiyama, C. Yang, Z.-H. Zhou, and J. Feng, “On the margin explanation of
boosting algorithms,” in COLT, pp. 479–490, Citeseer, 2008.

[19] W. Gao and Z.-H. Zhou, “On the doubt about margin explanation of boosting,” Artificial
Intelligence, vol. 203, pp. 1–18, 2013.

[20] B. Scholkopf and A. J. Smola, Learning with kernels: support vector machines,
regularization, optimization, and beyond.
MIT press, 2001.

[21] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine learning,” The
annals of statistics, pp. 1171–1220, 2008.

[22] S. Boyd and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[23] Y. Freund, “Boosting a weak learning algorithm by majority,” Information and
computation, vol. 121, no. 2, pp. 256–285, 1995.

[24] T. Hastie, R. Tibshirani, J. H. Friedman, and J. H. Friedman, The elements of statistical
learning: data mining, inference, and prediction, vol. 2.
Springer, 2009.

Boosting 34 / 35

References (cont.)

[25] B. Ghojogh and M. Crowley, “The theory behind overfitting, cross validation,
regularization, bagging, and boosting: tutorial,” arXiv preprint arXiv:1905.12787, 2019.

Boosting 35 / 35

