Introduction to the Course

Statistical Machine Learning (ENGG*6600*08)

School of Engineering, University of Guelph, ON, Canada

Course Instructor: Benyamin Ghojogh Fall 2023

Introduction of the Instructor and Students

Let us know each other by introducing ourselves!

Feel free to let us know (if you would like):

- Your name
- Your major
- Whether you are studying MEng, MASc, or PhD
- What is your goal for taking this course? What are your expectations from this course?
- How much you know about statistical machine learning?
- How was your vacation between semesters? :)

Introduction of the Course

- This course focuses on statistical machine learning, which is almost most of the machine learning without a deep learning approach.
- We start with preliminaries and background, then the mapping model and tasks in machine learning.
- Then, over<u>fitting and cross validation</u> are explained.
- Regression models, including linear regression, ridge regression, and lasso regression, are introduced.
- Classic <u>classification</u> methods, such as <u>LDA</u>, <u>QDA</u>, <u>SVM</u>, <u>kernel SVM</u>, <u>Bayes</u>, <u>KNN</u>, <u>trees</u>, and <u>random forest</u> are covered.
- Bagging and boosting (AdaBoost) are then explained.
- Afterwards, mixture distributions and Gaussian mixture models are covered.
- In the meantime, we cover point estimation including <u>MLE</u> and <u>EM algorithms</u>.
- Then, spectral and probabilistic feature extraction, including PCA, FDA, MDS, Isomap, LLE, variational inference, factor analysis, probabilistic PCA, t-SNE, UMAP, and metric learning, are explained.
- If time allows, other topics can be covered including clustering algorithms, probabilistic graphical models (Markov models, factor graphs, HMM, and MCMC), causal inference, and outlier (anomaly) detection.

The Tentative Schedule of Weeks

Week 1		Week 7	
Topics:	Preliminaries (probability, random variable, expectation, centering matrix, norm, derivative, Rayleigh-Ritz quotient, eigenvalue and singular value decompositions)	Topics:	Mixture distribution and Gaussian mixture model, Principal component analysis (PCA), dual PCA, kernel PCA, supervised PCA
Week 2		Week 8	
Topics:	Overfitting, cross validation, regularization, Linear discriminant analysis (LDA) and Quadratic discriminant analysis (QDA)	Topics:	Midterm exam
		Week 9	
Week 3 Topics:	Linear regression, ridge regression, Lasso regression	Topics:	Fisher discriminant analysis (FDA), kernel FDA, Multidimensional scaling (MDS), Sammon mapping, Isomap
Week 4		Week 10	
Topics:	Support vector machine (SVM) and kernel SVM	Topics:	Locally linear embedding (LLE), Variational inference, factor analysis, probabilistic PCA
Week 5			
Topics:	K-nearest neighbors (KNN), Bayes and naive Bayes classifiers, logistic regression, tree and random forest	Week 11	
		Topics:	Stochastic neighbor embedding (SNE) and t-SNE, Uniform Manifold Approximation and Projection (UMAP)
Week 6			
Topics:	Boosting and AdaBoost		

Course Materials

- Lecture notes will be provided to you.
- YouTube channel of the course: [Link]
- Our tutorial papers: [Link]
- Additional resource for interested students: Prof. Ali Ghodsi's lectures at the University of Waterloo: [Link]
- Additional books (these books are available at the University's book store):
 - Benyamin Ghojogh, Mark Crowley, Fakhri Karray, Ali Ghodsi, "<u>Elements of</u> Dimensionality Reduction and Manifold Learning", Springer, 2023, [Link]
 - Christopher M. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006 [Link]
 - Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical, Learning: Data Mining, Inference, and Prediction", Springer, 2009, [Link]
- Research articles in the literature

Course's Websites

Introducing the instructor of the course:

- Instructor: Benyamin Ghojogh, email address: bghojogh@uoguelph.ca
- The course does not have any TA in this semester :(

Course info:

- Classes will be in-person.
- Discussion chats and questions will be in <u>Microsoft Teams group</u> of the course. The students will be added to the Teams group. Please mention (tag) my name when you post a question or message in Teams (so it notifies us).
- The course's website is: https://bghojogh.github.io/pages/uoguelph/engg-6600-08-f23/
- I will probably upload the videos of the classes to my YouTube channel [Click here].
 I will eliminate personal information of students (such as when they introduce themselves) in the videos.

Course Evaluation

- Assignments: Assignments will be posted on CourseLink along with the due dates. They
 are not mandatory but are for you to practice. They are not graded. I will provide the
 solution keys to you after the due times.
- The midterm exam (50%): Date will be around week 6. Details to be discussed in class.
- Course project (40%)
 - Date: Week 6 11
 - More details will be discussed in class. Report will be electronic submission due in CourseLink.
 - The number of people in each group will be announced in the class.
 - Pick a topic after 6 weeks.
 - Submit the title and proposal/objectives in CourseLink to be checked and approved.
- Group Presentation (10%):
 - Date: Week 11 12
 - During class time
- Bonus points: participation in class, participation in the discussions, asking questions, and answering questions.

Course's Goal

- Don't worry much about your marks!
- Focus on understanding the materials of the course.
- Our goal is to learn the important practical and theoretical algorithms in statistical machine learning, so you can use them in both your <u>industrial projects</u> and <u>academic</u> research.
- About theory and practice:
 - We will learn some theory to understand why these methods work.
 - We will also learn how to use the methods in **practice** for practical usage.

Ask Questions!

- Please ask questions whenever you do not understand something.
- Let the class be discussion-based. I do not want to be the sole speaker. We are gonna learn all together.