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Dataset

Consider a dataset {x1, x2, . . . , xn} where x i ∈ Rd .

We have some labels too: {y1, y2, . . . , yn} where y i ∈ Rp . Usually p = 1 (but not
always).

The labels are not necessarily discrete but can be continuous.

Example: data can be the data of weather temperature, longitude, latitude, etc, of the
city. The label can be the pollution of the city.
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Linear Regression

We can consider a map f (.) which maps data to the labels:

y = f (x) + ϵ, (1)

where ϵ ∈ Rp is noise.

In regression, we want to estimate this map f .

In linear regression, we want to estimate this map f by a line (or affine function).

First, consider the case p = 1:

R ∋ f (x) = β0 +
d∑

j=1

βjxj (2)

where xj is the j-th element of x and {βj ∈ R}dj=0 are the learnable parameters and

β0 ∈ R is specifically for learning the bias (intercept).
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Linear Regression

One way to do this estimation is to minimize the least squares error between the labels
and the estimated model:

minimize
{βj}dj=0

n∑
i=1

(
yi − f (x i )

)2 (2)
=

n∑
i=1

(
yi − β0 −

d∑
j=1

βjxij

)2
, (3)

where xij is the j-th element of x i , i.e., x i = [xi1, . . . , xid ]
⊤.

We can write it in matrix form. Let:

Rd+1 ∋ β := [β0, β1, . . . , βd ]
⊤, Rn×(d+1) ∋ X :=


1, x⊤

1
1, x⊤

2
...

1, x⊤
n

 =


1, x11, . . . , x1d
1, x21, . . . , x2d

...
1, xn1, . . . , xnd

 ,

Rn ∋ y := [y0, y1, . . . , yn]
⊤.

The above optimization problem becomes:

minimize
β

∥y − Xβ∥22. (4)
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Linear Regression

The cost function is simplified as:

∥y − Xβ∥22 = (y − Xβ)⊤(y − Xβ) = (y⊤ − β⊤X⊤)(y − Xβ)

= y⊤y − y⊤Xβ − β⊤X⊤Y + β⊤X⊤Xβ.

Taking derivative of the cost function and setting to zero:

∂

∂β
(∥y − Xβ∥22) = −X⊤y − X⊤y + 2X⊤Xβ

set
= 0

=⇒ 2X⊤Xβ = 2X⊤y

=⇒ β = (X⊤X )−1X⊤y . (5)

Test phase: The predicted labels for some data X is:

y = Xβ = X (X⊤X )−1X⊤y . (6)
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Linear Regression

In a more general form, if p is not necessarily one, we have:

R(d+1)×p ∋ B := [β0,β1, . . . ,βd ]
⊤, Rn×p ∋ Y :=


y⊤
1

y⊤
2
...

y⊤
n

 ,

where βj ∈ Rp and y j ∈ Rp .

In this case, the optimization problem becomes:

minimize
B

∥Y − XB∥2F , (7)

where ∥.∥F denotes the Frobenius norm.
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Linear Regression

The cost function is simplified as:

∥Y − XB∥2F = tr
(
(Y − XB)⊤(Y − XB)

)
= tr

(
(Y⊤ − B⊤X⊤)(Y − XB))

= tr(Y⊤Y )− tr(Y⊤XB)− tr(B⊤X⊤Y ) + tr(B⊤X⊤XB
)
.

Taking derivative of the cost function and setting to zero:

∂

∂B
(∥Y − XB∥2F ) = −X⊤Y − X⊤Y + 2X⊤XB set

= 0

=⇒ 2X⊤XB = 2X⊤Y

=⇒ B = (X⊤X )−1X⊤Y . (8)

Test phase: The predicted labels for some data X is:

Y = XB = X (X⊤X )−1X⊤Y . (9)
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Ridge Linear
Regression
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Ridge Linear Regression

We add ℓ2 norm regularization term as a penalty on the size of the learnable parameters.

Case p = 1:

minimize
{βj}dj=0

n∑
i=1

(
yi − β0 −

d∑
j=1

βjxij

)2
+ λ

d∑
j=0

β2
j , (10)

where λ > 0 is the regularization parameter.

We can write it in matrix form. The above optimization problem becomes:

minimize
β

∥y − Xβ∥22 + λ∥β∥22. (11)
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Ridge Linear Regression

The cost function is simplified as:

∥y − Xβ∥22 + λ∥β∥22 = y⊤y − y⊤Xβ − β⊤X⊤Y + β⊤X⊤Xβ + λβ⊤β.

Taking derivative of the cost function and setting to zero:

∂

∂β
(∥y − Xβ∥22 + ∥β∥22) = −X⊤y − X⊤y + 2X⊤Xβ + 2λβ

set
= 0

=⇒ 2X⊤Xβ + 2λβ = 2X⊤y =⇒ 2(X⊤X + λI )β = 2X⊤y

=⇒ β = (X⊤X + λI )−1X⊤y . (12)

It is strengthening the main diagonal of X⊤X so it makes X⊤X full rank and
non-singular. In other words, it makes X⊤X invertible.

Test phase: The predicted labels for some data X is:

y = Xβ = X (X⊤X + λI )−1X⊤y . (13)
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Ridge Linear Regression
More general case where p is not necessarily one:

minimize
B

∥Y − XB∥2F + λ∥B∥2F . (14)

The cost function is simplified as:

∥Y − XB∥2F + λ∥B∥2F = tr
(
(Y − XB)⊤(Y − XB)

)
+ λtr(B⊤B)

= tr
(
(Y⊤ − B⊤X⊤)(Y − XB)) + λtr(B⊤B)

= tr(Y⊤Y )− tr(Y⊤XB)− tr(B⊤X⊤Y ) + tr(B⊤X⊤XB
)
+ λtr(B⊤B).

Taking derivative of the cost function and setting to zero:

∂

∂B
(∥Y − XB∥2F + λtr(B⊤B)) = −X⊤Y − X⊤Y + 2X⊤XB + 2λB set

= 0

=⇒ 2X⊤XB + 2λB = 2X⊤Y =⇒ 2(X⊤X + λI )B = 2X⊤Y

=⇒ B = (X⊤X + λI )−1X⊤Y . (15)

Test phase: The predicted labels for some data X is:

Y = XB = X (X⊤X + λI )−1X⊤Y . (16)
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Lasso Linear
Regression
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ℓ1 Norm Regularization

As explained before, sparsity is very useful and effective. If x = [x1, . . . , xd ]
⊤, for having

sparsity, we should use subset selection for the regularization:

minimize
x

J̃(x ; θ) := J(x ; θ) + α ||x ||0, (17)

where:

||x ||0 :=
d∑

j=1

I(xj ̸= 0) =

{
0 if xj = 0,
1 if xj ̸= 0,

(18)

is “ℓ0” norm, which is not a norm (so we used “.” for it) because it does not satisfy the
norm properties [1]. The “ℓ0” norm counts the number of non-zero elements so when we
penalize it, it means that we want to have sparser solutions with many zero entries.

According to [2], the convex relaxation of “ℓ0” norm (subset selection) is ℓ1 norm.
Therefore, we write the regularized optimization as:

minimize
x

J̃(x ; θ) := J(x ; θ) + α ||x ||1. (19)

The ℓ1 regularization is also referred to as lasso (least absolute shrinkage and selection
operator) regularization [3].
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Lasso Linear Regression
We add ℓ1 norm regularization term as a penalty on the size of the learnable parameters.

Case p = 1:

minimize
{βj}dj=0

n∑
i=1

(
yi − β0 −

d∑
j=1

βjxij

)2
+ λ

d∑
j=0

|βj |, (20)

where λ > 0 is the regularization parameter and |.| denotes the absolute value function.

We can write it in matrix form. The above optimization problem becomes:

minimize
β

∥y − Xβ∥22 + λ∥β∥1. (21)

Let x ′
k ∈ Rn denote the k-th column of X ∈ Rn×(d+1), i.e., X = [x ′

1, . . . , x
′
d+1]. The

above cost function can be restated as:

minimize
β=[β1,...,βd+1]

⊤

∥∥y −
d+1∑
k=1

βkx ′
k

∥∥2
2
+ λ∥β∥1. (22)

This cost function can be further restated as below by taking out the j-th element from
the summation:

minimize
β=[β1,...,βd+1]

⊤

∥∥y −
d+1∑

k=1,k ̸=j

βkx ′
k − βjx ′

j

∥∥2
2
+ λ∥β∥1. (23)
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Lasso Linear Regression

We had:

minimize
β=[β1,...,βd+1]

⊤

∥∥y −
d+1∑

k=1,k ̸=j

βkx ′
k − βjx ′

j

∥∥2
2
+ λ∥β∥1.

We define:

Rn ∋ z := y −
d+1∑

k=1,k ̸=j

βkx ′
k . (24)

Therefore the cost function becomes:

minimize
β=[β1,...,βd+1]

⊤
∥z − βjx ′

j∥
2
2 + λ∥β∥1.

We use coordinate descent for optimization. Considering the j-th element of β, we have:

minimize
βj

∥z − βjx ′
j∥

2
2 + λ|βj |,

where z is a constant with respect to βj .
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Lasso Linear Regression
We had:

minimize
βj

∥z − βjx ′
j∥

2
2 + λ|βj |.

The cost is simplified as:

∥z − βjx ′
j∥

2
2 + λ|βj | = (z − βjx ′

j )
⊤(z − βjx ′

j ) + λ|βj |

= (z⊤ − βjx
′⊤
j )(z − βjx ′

j ) + λ|βj | = z⊤z − βjz⊤x ′
j − βjx

′⊤
j z + β2

j x
′⊤
j x ′

j + λ|βj |,

where it is noticed in calculations that βj is a scalar.

Taking derivative of the cost function with respect to βj and setting to zero:

∂

∂βj
(∥z − βjx ′

j∥
2
2 + λ|βj |) = −z⊤x ′

j − x
′⊤
j z + 2βjx

′⊤
j x ′

j + λ sign(βj )

= −x
′⊤
j z − x

′⊤
j z + 2βjx

′⊤
j x ′

j + λ sign(βj ) = −2x
′⊤
j z + 2βjx

′⊤
j x ′

j + λ sign(βj )
set
= 0

=⇒ βj =


x
′⊤
j z

x′⊤j x′j
− λ

2
if βj ≥ 0

x
′⊤
j z

x′⊤j x′j
+ λ

2
if βj < 0.
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Lasso Linear Regression
We found:

βj =


x
′⊤
j z

x′⊤j x′j
− λ

2
if βj ≥ 0

x
′⊤
j z

x′⊤j x′j
+ λ

2
if βj < 0.

(25)

If the cost is (1/2)∥z − βjx ′
j∥

2
2 + λ|βj |, then the (1/2) multipliers of λ will go away (if you

put (1/2) multiplied by the norm and calculate the derivative as was done, you will see
why):

βj =


x
′⊤
j z

x′⊤j x′j
− λ if βj ≥ 0

x
′⊤
j z

x′⊤j x′j
+ λ if βj < 0.

(26)

If the columns of matrix X are normalized to have unit length, then x
′⊤
j x ′

j = ∥x ′
j∥

2
2 = 1

and it would simplify the solution further to:

βj =

{
x
′⊤
j z − λ if βj ≥ 0

x
′⊤
j z + λ if βj < 0.

(27)
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Lasso Linear Regression

This is a soft-thresholding function:

βj =

{
x
′⊤
j z − λ if βj ≥ 0

x
′⊤
j z + λ if βj < 0.
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Comparison of ℓ2 and ℓ1 Regularization
An intuition for why the ℓ1 norm regularization is sparse is illustrated below (credit if
Tibshirani - 1996 [3]).

The objective J(x ; θ) has some contour levels like a bowl (if it is convex). The
regularization term is also a norm ball, which is a sphere bowl (cone) for ℓ2 norm and a
diamond bowl (cone) for ℓ1 norm [1].

For ℓ2 norm regularization, the objective and the penalty term contact at a point where
some of the coordinates might be small; however, for ℓ1 norm, the contact point can be at
some point where some variables are exactly zero. This again shows the reason of sparsity
in ℓ1 norm regularization.
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Acknowledgment

For more information on linear regression, see the book: Trevor Hastie, Robert Tibshirani,
Jerome H. Friedman, Jerome H. Friedman. “The elements of statistical learning: data
mining, inference, and prediction”. Vol. 2. New York: springer, 2009 [4].

Another textbook suitable for sparsity in machine learning is: Robert Tibshirani, Martin
Wainwright, Trevor Hastie, ”Statistical learning with sparsity: the lasso and
generalizations”, Chapman and Hall/CRC, 2015 [5].

Some slides of this slide deck are inspired by teachings of Prof. Mu Zhu at University of
Waterloo, Department of Statistics and Prof. Hoda Mohammadzade at Sharif University
of Technology, Department of Electrical Engineering.
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