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Maximum Likelihood Estimation
Assume we have a sample with size n, i.e., {x1, . . . , xn}. Also assume that we know the
distribution from which this sample has been randomly drawn but we do not know the
parameters of that distribution.

For example, we know it is drawn from a normal distribution but the mean and variance of
this distribution are unknown. The goal is to estimate the parameters of the distribution
using the sample {x1, . . . , xn} available from it.

This estimation of parameters from the available sample is called “point estimation”.
One of the approaches for point estimation is Maximum Likelihood Estimation (MLE).

As it is obvious from its name, MLE deals with the likelihood of data.

We postulate that the values of sample, i.e., x1, . . . , xn, are independent random variates
of data having the sample distribution. In other words, the data has a joint distribution
fX (x1, . . . , xn|Θ) with parameter Θ and we assume the variates are independent and

identically distributed (iid) variates, i.e., xi
iid∼ fX (xi ; Θ) with the same parameter Θ.

Considering the Bayes rule, we have:

f (Θ|x1, . . . , xn) =
fX (x1, . . . , xn|Θ)π(Θ)

fX (x1, . . . , xn)
. (1)

The MLE aims to find parameter Θ which maximizes the likelihood:

Θ̂ = argmax
Θ

fX (x1, . . . , xn|Θ). (2)
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Maximum Likelihood Estimation
As the points are i.i.d., the likelihood can be written as:

L(x1, . . . , xn|Θ) = f (x1, . . . , xn; Θ) =
n∏

i=1

f (xi ,Θ). (3)

Note that in literature, the L(x1, . . . , xn|Θ) is also denoted by L(Θ) for simplicity.

Usually, for more convenience, we use log-likelihood rather than likelihood:

ℓ(Θ) := log L(Θ) (4)

= log
n∏

i=1

f (xi ,Θ) =
n∑

i=1

log f (xi ,Θ). (5)

So, MLE is:

Θ̂ = argmax
Θ

ℓ(Θ). (6)

Often, the logarithm is a natural logarithm for the sake of compatibility with the
exponential in the well-known normal density function.

Notice that as logarithm function is monotonic, it does not change the location of
maximization of the likelihood.

In Maximum A Posterior (MAP), we maximize the posterior rather than the likelihood:

Θ̂ = argmax
Θ

f (Θ|x1, . . . , xn). (7)
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Expectation Maximization

Sometimes, the data are not fully observable. For example, the data are known to be
whether zero or greater than zero.

As an illustration, assume the data are collected for a particular disease but for
convenience of the patients participated in the survey, the severity of the disease is not
recorded but only the existence or non-existence of the disease is reported. So, the data
are not giving us complete information as Xi > 0 is not obvious whether is Xi = 2 or
Xi = 1000.

In this case, MLE cannot be directly applied as we do not have access to complete
information and some data are missing.

In this case, Expectation Maximization (EM) is useful.

The main idea of EM can be summarized in this short friendly conversation:
– What shall we do? The data is missing! The log-likelihood is not known completely so
MLE cannot be used.
– Mmm, probably we can replace the missing data with something...
– Aha! Let us replace it with its mean.
– You are right! We can take the mean of log-likelihood over the possible values of the
missing data. Then everything in the log-likelihood will be known, and then...
– And then we can do MLE!
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Expectation Maximization

Assume D(obs) and D(miss) denote the observed data (Xi ’s = 0 in the above example) and
the missing data (Xi ’s > 0 in the above example).

The EM algorithm includes two main steps, i.e., E-step and M-step.

In the E-step (Expectation Step), the log-likelihood (equation (4)), is taken expectation
with respect to the missing data D(miss) in order to have a mean estimation of it. Let
Q(Θ) denote the expectation of the likelihood with respect to D(miss):

Q(Θ) := ED(miss)|D(obs),Θ[ℓ(Θ)]. (8)

Note that in the above expectation, the D(obs) and Θ are conditioned on, so they are
treated as constants and not random variables.

In the M-step (Maximization Step), the MLE approach is used where the log-likelihood is
replaced with its expectation, i.e., Q(Θ); therefore:

Θ̂ = argmax
Θ

Q(Θ). (9)

These two steps are iteratively repeated until convergence of the estimated parameters Θ̂.

Mixture Distribution 6 / 28



Introduction to
Mixture Distribution

Mixture Distribution 7 / 28



Introduction to Mixture Distribution
Every random variable can be considered as a sample from a distribution, whether a
well-known distribution or a not very well-known (or “ugly”) distribution. Some random
variables are drawn from one single distribution, such as a normal distribution. But life is
not always so easy! Most of real-life random variables might have been generated from a
mixture of several distributions and not a single distribution.

The mixture distribution is a weighted summation of K distributions
{g1(x ; Θ1), . . . , gK (x ; ΘK )} where the weights {w1, . . . ,wK} sum to one. As is obvious,
every distribution in the mixture has its own parameter Θk .

The mixture distribution is formulated as:

f (x ; Θ1, . . . ,ΘK ) =
K∑

k=1

wk gk (x ; Θk ),

subject to
K∑

k=1

wk = 1.

(10)

The distributions can be from different families, for example from beta and normal
distributions. However, this makes the problem very complex and sometimes useless;
therefore, mostly the distributions in a mixture are from one family (e.g., all normal
distributions) but with different parameters.

We aim to find the parameters of the distributions in the mixture distribution f (x ; Θ) as
well as the weights (also called “mixing probabilities”) wk .
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EM for Mixture
Distribution
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EM for Mixture Distribution
We want to fit a mixture of K distributions g1(x ; Θ1), . . . , gK (x ; ΘK ) to the data. Again,
in theory, these K distributions are not necessarily from the same distribution family. For
more convenience of reader, equation (10) is repeated here:

f (x ; Θ1, . . . ,ΘK ) =
K∑

k=1

wk gk (x ; Θk ),

subject to
K∑

k=1

wk = 1.

The likelihood and log-likelihood for this mixture are:

L(Θ1, . . . ,ΘK ) = f (x1, . . . , xn; Θ1, . . . ,ΘK )
(a)
=

n∏
i=1

f (xi ; Θ1, . . . ,ΘK )

=
n∏

i=1

K∑
k=1

wkgk (xi ; Θk )

ℓ(Θ1, . . . ,ΘK ) =
n∑

i=1

log
[ K∑
k=1

wkgk (xi ; Θk )
]
,

where (a) is because of assumption that x1, . . . , xn are iid .
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EM for Mixture Distribution
We had:

ℓ(Θ1, . . . ,ΘK ) =
n∑

i=1

log
[ K∑
k=1

wkgk (xi ; Θk )
]
.

Optimizing this log-likelihood is difficult because of the summation within the logarithm.
We use a trick:

∆i,k :=

{
1 if xi belongs to gk (x ; Θk ),
0 otherwise,

and its probability is: {
P(∆i,k = 1) = wk ,
P(∆i,k = 0) = 1− wk .

Therefore, the log-likelihood can be written as:

ℓ(Θ1, . . . ,ΘK ) =



∑n
i=1 log

[
w1 g1(xi ; Θ1)

]
if ∆i,1 = 1 and ∆i,k = 0 ∀k ̸= 1∑n

i=1 log
[
w2 g2(xi ; Θ2)

]
if ∆i,2 = 1 and ∆i,k = 0 ∀k ̸= 2

...∑n
i=1 log

[
wK gK (xi ; ΘK )

]
if ∆i,K = 1 and ∆i,k = 0 ∀k ̸= K
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EM for Mixture Distribution

We had:

ℓ(Θ1, . . . ,ΘK ) =



∑n
i=1 log

[
w1 g1(xi ; Θ1)

]
if ∆i,1 = 1 and ∆i,k = 0 ∀k ̸= 1∑n

i=1 log
[
w2 g2(xi ; Θ2)

]
if ∆i,2 = 1 and ∆i,k = 0 ∀k ̸= 2

...∑n
i=1 log

[
wK gK (xi ; ΘK )

]
if ∆i,K = 1 and ∆i,k = 0 ∀k ̸= K

The above expression can be restated as:

ℓ(Θ1, . . . ,ΘK ) =
n∑

i=1

[
K∑

k=1

∆i,k log
(
wkgk (xi ; Θk )

)]
.

The ∆i,k here is the incomplete (missing) datum because we do not know whether it is
∆i,k = 0 or ∆i,k = 1 for xi and a specific k. Therefore, using the EM algorithm, we try to
estimate it by its expectation.
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EM for Mixture Distribution
We found:

ℓ(Θ1, . . . ,ΘK ) =
n∑

i=1

[
K∑

k=1

∆i,k log
(
wkgk (xi ; Θk )

)]
.

The E-step in EM:

Q(Θ1, . . . ,ΘK ) =
n∑

i=1

[
K∑

k=1

E[∆i,k |X ,Θ1, . . . ,ΘK ]× log
(
wkgk (xi ; Θk )

)]
.

The ∆i,k is either 0 or 1; therefore:

E[∆i,k |X ,Θ1, . . . ,ΘK ] = 0× P(∆i,k = 0|X ,Θ1, . . . ,ΘK ) + 1× P(∆i,k = 1|X ,Θ1, . . . ,ΘK )

= P(∆i,k = 1|X ,Θ1, . . . ,ΘK ).

According to Bayes rule, we have:

P(∆i,k = 1|X ,Θ1, . . . ,ΘK ) =
P(X ,Θ1, . . . ,ΘK ,∆i,k = 1)

P(X ; Θ1, . . . ,ΘK )

=
P(X ,Θ1, . . . ,ΘK |∆i,k = 1)P(∆i,k = 1)∑K

k′=1 P(X ,Θ1, . . . ,ΘK |∆i,k′ = 1)P(∆i,k′ = 1)
.
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EM for Mixture Distribution
In summary, we had:

Q(Θ1, . . . ,ΘK ) =
n∑

i=1

[
K∑

k=1

E[∆i,k |X ,Θ1, . . . ,ΘK ]× log
(
wkgk (xi ; Θk )

)]
,

E[∆i,k |X ,Θ1, . . . ,ΘK ] = P(∆i,k = 1|X ,Θ1, . . . ,ΘK ),

P(∆i,k = 1|X ,Θ1, . . . ,ΘK ) =
P(X ,Θ1, . . . ,ΘK |∆i,k = 1)P(∆i,k = 1)∑K

k′=1 P(X ,Θ1, . . . ,ΘK |∆i,k′ = 1)P(∆i,k′ = 1)
.

The marginal probability in the denominator is:

P(X ; Θ1, . . . ,ΘK ) =
K∑

k′=1

wk′ gk′ (xi ; Θk′ ).

Assuming that γ̂i,k := E[∆i,k |X ,Θ1, . . . ,ΘK ] (called responsibility of xi ), we have:

γ̂i,k =
ŵk gk (xi ; Θk )∑K

k′=1 ŵk′ gk′ (xi ; Θk′ )
, (11)

and

Q(Θ1, . . . ,ΘK ) =
n∑

i=1

K∑
k=1

γ̂i,k log
(
wkgk (xi ; Θk )

)
. (12)
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EM for Mixture Distribution

We found:

Q(Θ1, . . . ,ΘK ) =
n∑

i=1

K∑
k=1

γ̂i,k log
(
wkgk (xi ; Θk )

)
.

Some simplification of Q(Θ1, . . . ,ΘK ) will help in next step:

Q(Θ1, . . . ,ΘK ) =
n∑

i=1

K∑
k=1

[
γ̂i,k logwk + γ̂i,k log gk (xi ; Θk )

]
.

The M-step in EM:

Θ̂k , ŵk = arg max
Θk ,wk

Q(Θ1, . . . ,ΘK ,w1, . . . ,wK ),

subject to
K∑

k=1

wk = 1.

Note that the function Q(Θ1, . . . ,ΘK ) is also a function of w1, . . . ,wK and that is why
we wrote it as Q(Θ1, . . . ,ΘK ,w1, . . . ,wK ).
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EM for Mixture Distribution
We had:

Θ̂k , ŵk = arg max
Θk ,wk

Q(Θ1, . . . ,ΘK ,w1, . . . ,wK ),

subject to
K∑

k=1

wk = 1.

The above problem is a constrained optimization problem:

maximize
Θk ,wk

Q(Θ1, . . . ,ΘK ,w1, . . . ,wK ),

subject to
K∑

k=1

wk = 1,

which can be solved using Lagrange multiplier:

L(Θ1, . . . ,ΘK ,w1, . . . ,wK , α) = Q(Θ1, . . . ,ΘK ,w1, . . . ,wK )− α
( K∑
k=1

wk − 1
)

=
n∑

i=1

K∑
k=1

[
γ̂i,k logwk + γ̂i,k log gk (xi ; Θk )

]
− α

( K∑
k=1

wk − 1
)
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EM for Mixture Distribution
We had:

L(Θ1, . . . ,ΘK ,w1, . . . ,wK , α) =
n∑

i=1

K∑
k=1

[
γ̂i,k logwk + γ̂i,k log gk (xi ; Θk )

]
− α

( K∑
k=1

wk − 1
)

∂L
∂Θk

=
n∑

i=1

γ̂i,k

gk (xi ; Θk )

∂gk (xi ; Θk )

∂Θk

set
= 0 (13)

∂L
∂wk

=
n∑

i=1

γ̂i,k

wk
− α

set
= 0 =⇒ wk =

1

α

n∑
i=1

γi,k

∂L
∂α

=
K∑

k=1

wk − 1
set
= 0 =⇒

K∑
k=1

wk = 1

∴
K∑

k=1

1

α

n∑
i=1

γi,k = 1 =⇒ α =
n∑

i=1

K∑
k=1

γi,k

∴ ŵk =

∑n
i=1 γi,k∑n

i=1

∑K
k′=1 γi,k′

(14)

Solving equations (13) and (14) gives us the estimations Θ̂k and ŵk (for k ∈ {1, . . . ,K})
in every iteration.
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Algorithm for Mixture Distribution
We had:

γ̂i,k =
ŵk gk (xi ; Θk )∑K

k′=1 ŵk′ gk′ (xi ; Θk′ )
,

∂L
∂Θk

=
n∑

i=1

γ̂i,k

gk (xi ; Θk )

∂gk (xi ; Θk )

∂Θk

set
= 0,

ŵk =

∑n
i=1 γi,k∑n

i=1

∑K
k′=1 γi,k′

.
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Gaussian Mixture
Model
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Gaussian Mixture Model
Here, we consider a mixture of K one-dimensional Gaussian distributions as an example
for mixture of several continuous distributions. In this case, we have:

gk (x ;µk , σ
2
k ) =

1√
2πσ2

k

exp(−
(x − µk )

2

2σ2
k

) = ϕ(
x − µk

σk
), ∀k ∈ {1, . . . ,K}

Therefore, equation (10) becomes:

f (x ;µ1, . . . , µK , σ
2
1 , . . . , σ

2
K ) =

K∑
k=1

wk ϕ(
x − µk

σk
). (15)

The equation (11) becomes:

γ̂i,k =
ŵk ϕ(

xi−µk
σk

)∑K
k′=1 ŵk′ ϕ(

xi−µk′
σk′

)
. (16)

The Q(µ1, . . . , µK , σ
2
1 , . . . , σ

2
K ) is:

Q(µ1, . . . , µK , σ
2
1 , . . . , σ

2
K )

=
n∑

i=1

K∑
k=1

[
γ̂i,k logwk + γ̂i,k

(
−

1

2
log(2π)− log σk −

(xi − µk )
2

2σ2
k

)]
.
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Gaussian Mixture Model
We found:

Q(µ1, . . . , µK , σ
2
1 , . . . , σ

2
K )

=
n∑

i=1

K∑
k=1

[
γ̂i,k logwk + γ̂i,k

(
−

1

2
log(2π)− log σk −

(xi − µk )
2

2σ2
k

)]
.

The Lagrangian is:

L(µ1, . . . , µK , σ
2
1 , . . . , σ

2
K ,w1, . . . ,wK , α)

=
n∑

i=1

K∑
k=1

[
γ̂i,k logwk + γ̂i,k

(
−

1

2
log(2π)− log σk −

(xi − µk )
2

2σ2
k

)]
− α

( K∑
k=1

wk − 1
)
.

Therefore:

∂L
∂µk

=
n∑

i=1

[
γ̂i,k (

xi − µk

σ2
k

)
]

set
= 0 =⇒ µ̂k =

∑n
i=1 γ̂i,k xi∑n
i=1 γ̂i,k

, (17)

∂L
∂σk

=
n∑

i=1

[
γ̂i,k (

−1

σk
+

(xi − µk )
2

σ3
k

)
]

set
= 0 =⇒ σ̂2

k =

∑n
i=1 γ̂i,k (xi − µ̂k )

2∑n
i=1 γ̂i,k

, (18)

and ŵk is the same as equation (14).
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Algorithm for Mixture Distribution
We had:

γ̂i,k =
ŵk ϕ(

xi−µk
σk

)∑K
k′=1 ŵk′ ϕ(

xi−µk′
σk′

)
, ŵk =

∑n
i=1 γi,k∑n

i=1

∑K
k′=1 γi,k′

.

The Θ patameters:

µ̂k =

∑n
i=1 γ̂i,k xi∑n
i=1 γ̂i,k

, σ̂2
k =

∑n
i=1 γ̂i,k (xi − µ̂k )

2∑n
i=1 γ̂i,k

.
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Gaussian Mixture
Model: Simulation
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Gaussian Mixture Model: Simulation

A sample with size n = 2200 from three distributions is randomly generated for this
experiment:

ϕ(
x − µ1

σ1
) = ϕ(

x + 10

1.2
),

ϕ(
x − µ2

σ2
) = ϕ(

x − 0

2
),

ϕ(
x − µ3

σ3
) = ϕ(

x − 5

5
).

For having generality, the size of subset of sample generated from the three densities are
different, i.e., 700, 1000, and 500.

Applying the EM algorithm and using equations (16), (17), (18), and (14) for mixture of
K = 3 Gaussians gives us the estimated values for the parameters:

µ1 = −9.99, σ1 = 1.17, w1 = 0.317

µ2 = −0.05, σ2 = 1.93, w2 = 0.445

µ3 = 4.64, σ3 = 4.86, w3 = 0.237

Comparing the estimations for µ1, µ2, µ3 and σ1, σ2, σ3 with those in original densities
from which data were generated verifies the correctness of the estimations.
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Gaussian Mixture Model: Simulation
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Gaussian Mixture Model: Simulation

The code of this simulation in my GitHub page (in R language):
https://github.com/bghojogh/Fitting-Mixture-Distribution
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Acknowledgment

Some slides are based on our tutorial paper: ”Fitting a mixture distribution to data:
tutorial” [1]

See our tutorial [1] for mixture of discrete distributions, such as mixture of Poisson
distributions.

Some slides of this slide deck are inspired by teachings of Prof. Mu Zhu at University of
Waterloo, Department of Statistics.

For more information on mixture distributions in machine learning, see the book: Trevor
Hastie, Robert Tibshirani, Jerome H. Friedman, Jerome H. Friedman. “The elements of
statistical learning: data mining, inference, and prediction”. Vol. 2. New York: springer,
2009 [2].

The code of fitting mixture distribution in my GitHub page (in R language):
https://github.com/bghojogh/Fitting-Mixture-Distribution

Mixture distribution in sklearn: https://scikit-learn.org/stable/modules/
generated/sklearn.mixture.GaussianMixture.html
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